Cannibalized from another post of mine, here's more than you ever wanted to know about this.

Before I start, here's the most important thing to keep in mind about Javascript, and to repeat to yourself when it doesn't make sense. Javascript does not have classes (ES6 class is syntactic sugar). If something looks like a class, it's a clever trick. Javascript has objects and functions. (that's not 100% accurate, functions are just objects, but it can sometimes be helpful to think of them as separate things)

The this variable is attached to functions. Whenever you invoke a function, this is given a certain value, depending on how you invoke the function. This is often called the invocation pattern.

There are four ways to invoke functions in javascript. You can invoke the function as a method, as a function, as a constructor, and with apply.

As a Method

A method is a function that's attached to an object

var foo = {};
foo.someMethod = function(){
    alert(this);
}

When invoked as a method, this will be bound to the object the function/method is a part of. In this example, this will be bound to foo.

As A Function

If you have a stand alone function, the this variable will be bound to the "global" object, almost always the window object in the context of a browser.

 var foo = function(){
    alert(this);
 }
 foo();
 

This may be what's tripping you up, but don't feel bad. Many people consider this a bad design decision. Since a callback is invoked as a function and not as a method, that's why you're seeing what appears to be inconsistent behavior.

Many people get around the problem by doing something like, um, this

var foo = {};
foo.someMethod = function (){
    var that=this;
    function bar(){
        alert(that);
    }
}

You define a variable that which points to this. Closure (a topic all its own) keeps that around, so if you call bar as a callback, it still has a reference.

NOTE: In use strict mode if used as function, this is not bound to global. (It is undefined).

As a Constructor

You can also invoke a function as a constructor. Based on the naming convention you're using (TestObject) this also may be what you're doing and is what's tripping you up.

You invoke a function as a Constructor with the new keyword.

function Foo(){
    this.confusing = 'hell yeah';
}
var myObject = new Foo();

When invoked as a constructor, a new Object will be created, and this will be bound to that object. Again, if you have inner functions and they're used as callbacks, you'll be invoking them as functions, and this will be bound to the global object. Use that var that = this trick/pattern.

Some people think the constructor/new keyword was a bone thrown to Java/traditional OOP programmers as a way to create something similar to classes.

With the Apply Method

Finally, every function has a method (yes, functions are objects in Javascript) named "apply". Apply lets you determine what the value of this will be, and also lets you pass in an array of arguments. Here's a useless example.

function foo(a,b){
    alert(a);
    alert(b);
    alert(this);
}
var args = ['ah','be'];
foo.apply('omg',args);

 
Answer from Alana Storm on Stack Overflow
🌐
MDN Web Docs
developer.mozilla.org › en-US › docs › Web › JavaScript › Reference › Operators › this
this - JavaScript | MDN
The this keyword refers to the context where a piece of code, such as a function's body, is supposed to run. Most typically, it is used in object methods, where this refers to the object that the method is attached to, thus allowing the same method to be reused on different objects.
🌐
W3Schools
w3schools.com › js › js_this.asp
JavaScript this in Objects
The this keyword refers to different objects depending on how it is used: ... You cannot change the value of this. When used in an object method, this refers to the object.
🌐
GeeksforGeeks
geeksforgeeks.org › javascript › javascript-this-keyword
JavaScript this Keyword - GeeksforGeeks
The 'this keyword' in JavaScript refers to the object to which it belongs. Its value is determined by how a function is called, making it a dynamic reference.
Published   July 11, 2025
🌐
web.dev
web.dev › learn › javascript › functions › this
The this keyword | web.dev
The keyword this refers to the value of the object that is bound to the function at the time of its call, meaning that its value is different depending on whether a function is called as a method, as a standalone function, or as a constructor.
🌐
AlmaBetter
almabetter.com › bytes › tutorials › javascript › this-keyword-in-javascript
This Keyword in JavaScript
In JavaScript, the 'this' keyword refers to the object that is currently executing or calling the function.
🌐
Dmitri Pavlutin
dmitripavlutin.com › gentle-explanation-of-this-in-javascript
Gentle Explanation of "this" in JavaScript
May 22, 2016 - The same scenario happens when using class syntax (available in ES2015), only the initialization happens in the constructor method: ... At the time when new Bar() is executed, JavaScript creates an empty object and makes it the context of the constructor() method. Now you can add properties to object using this keyword: this.property = 'Default Value'.
Top answer
1 of 7
578

Cannibalized from another post of mine, here's more than you ever wanted to know about this.

Before I start, here's the most important thing to keep in mind about Javascript, and to repeat to yourself when it doesn't make sense. Javascript does not have classes (ES6 class is syntactic sugar). If something looks like a class, it's a clever trick. Javascript has objects and functions. (that's not 100% accurate, functions are just objects, but it can sometimes be helpful to think of them as separate things)

The this variable is attached to functions. Whenever you invoke a function, this is given a certain value, depending on how you invoke the function. This is often called the invocation pattern.

There are four ways to invoke functions in javascript. You can invoke the function as a method, as a function, as a constructor, and with apply.

As a Method

A method is a function that's attached to an object

var foo = {};
foo.someMethod = function(){
    alert(this);
}

When invoked as a method, this will be bound to the object the function/method is a part of. In this example, this will be bound to foo.

As A Function

If you have a stand alone function, the this variable will be bound to the "global" object, almost always the window object in the context of a browser.

 var foo = function(){
    alert(this);
 }
 foo();
 

This may be what's tripping you up, but don't feel bad. Many people consider this a bad design decision. Since a callback is invoked as a function and not as a method, that's why you're seeing what appears to be inconsistent behavior.

Many people get around the problem by doing something like, um, this

var foo = {};
foo.someMethod = function (){
    var that=this;
    function bar(){
        alert(that);
    }
}

You define a variable that which points to this. Closure (a topic all its own) keeps that around, so if you call bar as a callback, it still has a reference.

NOTE: In use strict mode if used as function, this is not bound to global. (It is undefined).

As a Constructor

You can also invoke a function as a constructor. Based on the naming convention you're using (TestObject) this also may be what you're doing and is what's tripping you up.

You invoke a function as a Constructor with the new keyword.

function Foo(){
    this.confusing = 'hell yeah';
}
var myObject = new Foo();

When invoked as a constructor, a new Object will be created, and this will be bound to that object. Again, if you have inner functions and they're used as callbacks, you'll be invoking them as functions, and this will be bound to the global object. Use that var that = this trick/pattern.

Some people think the constructor/new keyword was a bone thrown to Java/traditional OOP programmers as a way to create something similar to classes.

With the Apply Method

Finally, every function has a method (yes, functions are objects in Javascript) named "apply". Apply lets you determine what the value of this will be, and also lets you pass in an array of arguments. Here's a useless example.

function foo(a,b){
    alert(a);
    alert(b);
    alert(this);
}
var args = ['ah','be'];
foo.apply('omg',args);

 
2 of 7
36

Function calls

Functions are just a type of Object.

All Function objects have call and apply methods which execute the Function object they're called on.

When called, the first argument to these methods specifies the object which will be referenced by the this keyword during execution of the Function - if it's null or undefined, the global object, window, is used for this.

Thus, calling a Function...

whereAmI = "window";

function foo()
{
    return "this is " + this.whereAmI + " with " + arguments.length + " + arguments";
}

...with parentheses - foo() - is equivalent to foo.call(undefined) or foo.apply(undefined), which is effectively the same as foo.call(window) or foo.apply(window).

>>> foo()
"this is window with 0 arguments"
>>> foo.call()
"this is window with 0 arguments"

Additional arguments to call are passed as the arguments to the function call, whereas a single additional argument to apply can specify the arguments for the function call as an Array-like object.

Thus, foo(1, 2, 3) is equivalent to foo.call(null, 1, 2, 3) or foo.apply(null, [1, 2, 3]).

>>> foo(1, 2, 3)
"this is window with 3 arguments"
>>> foo.apply(null, [1, 2, 3])
"this is window with 3 arguments"

If a function is a property of an object...

var obj =
{
    whereAmI: "obj",
    foo: foo
};

...accessing a reference to the Function via the object and calling it with parentheses - obj.foo() - is equivalent to foo.call(obj) or foo.apply(obj).

However, functions held as properties of objects are not "bound" to those objects. As you can see in the definition of obj above, since Functions are just a type of Object, they can be referenced (and thus can be passed by reference to a Function call or returned by reference from a Function call). When a reference to a Function is passed, no additional information about where it was passed from is carried with it, which is why the following happens:

>>> baz = obj.foo;
>>> baz();
"this is window with 0 arguments"

The call to our Function reference, baz, doesn't provide any context for the call, so it's effectively the same as baz.call(undefined), so this ends up referencing window. If we want baz to know that it belongs to obj, we need to somehow provide that information when baz is called, which is where the first argument to call or apply and closures come into play.

Scope chains

function bind(func, context)
{
    return function()
    {
        func.apply(context, arguments);
    };
}

When a Function is executed, it creates a new scope and has a reference to any enclosing scope. When the anonymous function is created in the above example, it has a reference to the scope it was created in, which is bind's scope. This is known as a "closure."

[global scope (window)] - whereAmI, foo, obj, baz
    |
    [bind scope] - func, context
        |
        [anonymous scope]

When you attempt to access a variable this "scope chain" is walked to find a variable with the given name - if the current scope doesn't contain the variable, you look at the next scope in the chain, and so on until you reach the global scope. When the anonymous function is returned and bind finishes executing, the anonymous function still has a reference to bind's scope, so bind's scope doesn't "go away".

Given all the above you should now be able to understand how scope works in the following example, and why the technique for passing a function around "pre-bound" with a particular value of this it will have when it is called works:

>>> baz = bind(obj.foo, obj);
>>> baz(1, 2);
"this is obj with 2 arguments"
Find elsewhere
🌐
freeCodeCamp
freecodecamp.org › news › the-this-keyword-in-javascript
How to Use the "this" Keyword in JavaScript
April 2, 2025 - An important comment is that this is not a variable – it's a keyword, so its value can't be changed or reassigned. If we call this by itself, meaning not within a function, object, or whatever, it will refer to the global window object. If you print it like console.log('this alone', this); you'll get this in your console: [object Window].
🌐
Simplilearn
simplilearn.com › home › resources › software development › javascript tutorial: learn javascript from scratch › javascript “this” keyword and how to implement it
What is 'This' Keyword in JavaScript? Here's How to Implement It
April 13, 2025 - Here's the complete guide on one of the JavaScript object 'This' keyword and how to implement it. Just keep reading to know more.
Address   5851 Legacy Circle, 6th Floor, Plano, TX 75024 United States
🌐
W3Schools
w3schools.com › js › js_function_this.asp
JavaScript this in Functions
In regular functions the this keyword represented the object that called the function, which could be the window, the document, a button or whatever. With arrow functions the this keyword always represents the object that defined the arrow function.
🌐
freeCodeCamp
freecodecamp.org › news › the-javascript-this-keyword-explained-with-examples
The JavaScript this Keyword Explained with Examples
June 5, 2024 - In JavaScript, a method gets the value of this when it looks at the function that comes before the dot. It's not news that the function constructor was the default initializer for user-defined objects before the introduction of the ECMAScript 2015 update. The new keyword creates an instance of a constructor function:
🌐
JavaScript Tutorial
javascripttutorial.net › home › javascript tutorial › demystifying the javascript this keyword
Demystifying JavaScript this Keyword with Practical Examples
August 17, 2025 - You get undefined instead of "Honda" ... object, JavaScript sets this to the global object in non-strict mode and undefined in the strict mode. To fix this issue, you can use the bind() method of the Function.prototype object. The bind() method creates a new function whose the this keyword is set to ...
🌐
Medium
medium.com › @omkarbhavare2406 › understanding-this-keyword-70f846594fd9
Understanding “this” Keyword. The this keyword in JavaScript is… | by Omkar Bhavare | Medium
October 8, 2025 - this.age = 26; const school = "NMV"; const person = { name: 'Omkar', sayName: () => { console.log(this); // { age : 26 } console.log(this.name); // undefined console.log(this.age); // 26 console.log(this.school); // undefined } }; person.sayName(); A constructor function in JavaScript is used to create objects, and when used with the new keyword, this refers to the new object being created.
🌐
ui.dev
ui.dev › this-keyword-call-apply-bind-javascript
Understanding the "this" keyword, call, apply, and bind in JavaScript
In this post you'll learn 5 rules for understanding JavaScript's 'this' keyword as well as JavaScript's bind, call, and apply array methods.
🌐
LoginRadius
loginradius.com › home
Breaking down the 'this' keyword in Javascript
October 6, 2020 - The global object refers to the owner of the 'this' keyword in this case. When it is in a browser window, this global object refers to the window object. ... Since that is true, if you make a strict comparison between the value of this and the window object, we get the boolean value of true. If you run this javascript file inside your computer using a tool like node, this keyword refers to an object of type of object, like so......
🌐
CodeParrot
codeparrot.ai › blogs › understanding-this-keyword-in-javascript-a-beginners-guide
The 'this' Keyword in JavaScript: A Beginner’s Guide
Helpful in Constructors and Classes: In ES6 classes or traditional constructor functions, "this" is indispensable for defining properties and methods on the newly created instance, giving each instance its own unique data. With these features, "this" is not only a keyword but also a fundamental aspect of JavaScript’s approach to functions, objects, and context-driven coding.
Top answer
1 of 16
1504

this is a keyword in JavaScript that is a property of an execution context. Its main use is in functions and constructors. The rules for this are quite simple (if you stick to best practices).

Technical description of this in the specification

The ECMAScript standard defines this via the abstract operation (abbreviated AO) ResolveThisBinding:

The [AO] ResolveThisBinding […] determines the binding of the keyword this using the LexicalEnvironment of the running execution context. [Steps]:

  1. Let envRec be GetThisEnvironment().
  2. Return ? envRec.GetThisBinding().

Global Environment Records, module Environment Records, and function Environment Records each have their own GetThisBinding method.

The GetThisEnvironment AO finds the current running execution context’s LexicalEnvironment and finds the closest ascendant Environment Record (by iteratively accessing their [[OuterEnv]] properties) which has a this binding (i.e. HasThisBinding returns true). This process ends in one of the three Environment Record types.

The value of this often depends on whether code is in strict mode.

The return value of GetThisBinding reflects the value of this of the current execution context, so whenever a new execution context is established, this resolves to a distinct value. This can also happen when the current execution context is modified. The following subsections list the five cases where this can happen.

You can put the code samples in the AST explorer to follow along with specification details.

1. Global execution context in scripts

This is script code evaluated at the top level, e.g. directly inside a <script>:

<script>
// Global context
console.log(this); // Logs global object.

setTimeout(function(){
  console.log("Not global context");
});
</script>

When in the initial global execution context of a script, evaluating this causes GetThisBinding to take the following steps:

The GetThisBinding concrete method of a global Environment Record envRec […] [does this]:

  1. Return envRec.[[GlobalThisValue]].

The [[GlobalThisValue]] property of a global Environment Record is always set to the host-defined global object, which is reachable via globalThis (window on Web, global on Node.js; Docs on MDN). Follow the steps of InitializeHostDefinedRealm to learn how the [[GlobalThisValue]] property comes to be.

2. Global execution context in modules

Modules have been introduced in ECMAScript 2015.

This applies to modules, e.g. when directly inside a <script type="module">, as opposed to a simple <script>.

When in the initial global execution context of a module, evaluating this causes GetThisBinding to take the following steps:

The GetThisBinding concrete method of a module Environment Record […] [does this]:

  1. Return undefined.

In modules, the value of this is always undefined in the global context. Modules are implicitly in strict mode.

3. Entering eval code

There are two kinds of eval calls: direct and indirect. This distinction exists since the ECMAScript 5th edition.

  • A direct eval call usually looks like eval(); or (eval)(); (or ((eval))();, etc.).1 It’s only direct if the call expression fits a narrow pattern.2
  • An indirect eval call involves calling the function reference eval in any other way. It could be eval?.(), (, eval)(), window.eval(), eval.call(,), etc. Given const aliasEval1 = eval; window.aliasEval2 = eval;, it would also be aliasEval1(), aliasEval2(). Separately, given const originalEval = eval; window.eval = (x) => originalEval(x);, calling eval() would also be indirect.

See chuckj’s answer to “(1, eval)('this') vs eval('this') in JavaScript?” and Dmitry Soshnikov’s ECMA-262-5 in detail – Chapter 2: Strict Mode (archived) for when you might use an indirect eval() call.

PerformEval executes the eval code. It creates a new declarative Environment Record as its LexicalEnvironment, which is where GetThisEnvironment gets the this value from.

Then, if this appears in eval code, the GetThisBinding method of the Environment Record found by GetThisEnvironment is called and its value returned.

And the created declarative Environment Record depends on whether the eval call was direct or indirect:

  • In a direct eval, it will be based on the current running execution context’s LexicalEnvironment.
  • In an indirect eval, it will be based on the [[GlobalEnv]] property (a global Environment Record) of the Realm Record which executed the indirect eval.

Which means:

  • In a direct eval, the this value doesn’t change; it’s taken from the lexical scope that called eval.
  • In an indirect eval, the this value is the global object (globalThis).

What about new Function? — new Function is similar to eval, but it doesn’t call the code immediately; it creates a function. A this binding doesn’t apply anywhere here, except when the function is called, which works normally, as explained in the next subsection.

4. Entering function code

Entering function code occurs when calling a function.

There are four categories of syntax to invoke a function.

  • The EvaluateCall AO is performed for these three:3
    • Normal function calls
    • Optional chaining calls
    • Tagged templates
  • And EvaluateNew is performed for this one:3
    • Constructor invocations

The actual function call happens at the Call AO, which is called with a thisValue determined from context; this argument is passed along in a long chain of call-related calls. Call calls the [[Call]] internal slot of the function. This calls PrepareForOrdinaryCall where a new function Environment Record is created:

A function Environment Record is a declarative Environment Record that is used to represent the top-level scope of a function and, if the function is not an ArrowFunction, provides a this binding. If a function is not an ArrowFunction function and references super, its function Environment Record also contains the state that is used to perform super method invocations from within the function.

In addition, there is the [[ThisValue]] field in a function Environment Record:

This is the this value used for this invocation of the function.

The NewFunctionEnvironment call also sets the function environment’s [[ThisBindingStatus]] property.

[[Call]] also calls OrdinaryCallBindThis, where the appropriate thisArgument is determined based on:

  • the original reference,
  • the kind of the function, and
  • whether or not the code is in strict mode.

Once determined, a final call to the BindThisValue method of the newly created function Environment Record actually sets the [[ThisValue]] field to the thisArgument.

Finally, this very field is where a function Environment Record’s GetThisBinding AO gets the value for this from:

The GetThisBinding concrete method of a function Environment Record envRec […] [does this]:

[…]
3. Return envRec.[[ThisValue]].

Again, how exactly the this value is determined depends on many factors; this was just a general overview. With this technical background, let’s examine all the concrete examples.

Arrow functions

When an arrow function is evaluated, the [[ThisMode]] internal slot of the function object is set to “lexical” in OrdinaryFunctionCreate.

At OrdinaryCallBindThis, which takes a function F:

  1. Let thisMode be F.[[ThisMode]].
  2. If thisMode is lexical, return NormalCompletion(undefined). […]

which just means that the rest of the algorithm which binds this is skipped. An arrow function does not bind its own this value.

So, what is this inside an arrow function, then? Looking back at ResolveThisBinding and GetThisEnvironment, the HasThisBinding method explicitly returns false.

The HasThisBinding concrete method of a function Environment Record envRec […] [does this]:

  1. If envRec.[[ThisBindingStatus]] is lexical, return false; otherwise, return true.

So the outer environment is looked up instead, iteratively. The process will end in one of the three environments that have a this binding.

This just means that, in arrow function bodies, this comes from the lexical scope of the arrow function, or in other words (from Arrow function vs function declaration / expressions: Are they equivalent / exchangeable?):

Arrow functions don’t have their own this […] binding. Instead, [this identifier is] resolved in the lexical scope like any other variable. That means that inside an arrow function, this [refers] to the [value of this] in the environment the arrow function is defined in (i.e. “outside” the arrow function).

Function properties

In normal functions (function, methods), this is determined by how the function is called.

This is where these “syntax variants” come in handy.

Consider this object containing a function:

const refObj = {
    func: function(){
      console.log(this);
    }
  };

Alternatively:

const refObj = {
    func(){
      console.log(this);
    }
  };

In any of the following function calls, the this value inside func will be refObj.1

  • refObj.func()
  • refObj["func"]()
  • refObj?.func()
  • refObj.func?.()
  • refObj.func``

If the called function is syntactically a property of a base object, then this base will be the “reference” of the call, which, in usual cases, will be the value of this. This is explained by the evaluation steps linked above; for example, in refObj.func() (or refObj["func"]()), the CallMemberExpression is the entire expression refObj.func(), which consists of the MemberExpression refObj.func and the Arguments ().

But also, refObj.func and refObj play three roles, each:

  • they’re both expressions,
  • they’re both references, and
  • they’re both values.

refObj.func as a value is the callable function object; the corresponding reference is used to determine the this binding.

The optional chaining and tagged template examples work very similarly: basically, the reference is everything before the ?.(), before the ``, or before the ().

EvaluateCall uses IsPropertyReference of that reference to determine if it is a property of an object, syntactically. It’s trying to get the [[Base]] property of the reference (which is e.g. refObj, when applied to refObj.func; or foo.bar when applied to foo.bar.baz). If it is written as a property, then GetThisValue will get this [[Base]] property and use it as the this value.

Note: Getters / Setters work the same way as methods, regarding this. Simple properties don’t affect the execution context, e.g. here, this is in global scope:

const o = {
    a: 1,
    b: this.a, // Is `globalThis.a`.
    [this.a]: 2 // Refers to `globalThis.a`.
  };

Calls without base reference, strict mode, and with

A call without a base reference is usually a function that isn’t called as a property. For example:

func(); // As opposed to `refObj.func();`.

This also happens when passing or assigning methods, or using the comma operator. This is where the difference between Reference Record and Value is relevant.

Note function j: following the specification, you will notice that j can only return the function object (Value) itself, but not a Reference Record. Therefore the base reference refObj is lost.

const g = (f) => f(); // No base ref.
const h = refObj.func;
const j = () => refObj.func;

g(refObj.func);
h(); // No base ref.
j()(); // No base ref.
(0, refObj.func)(); // Another common pattern to remove the base ref.

EvaluateCall calls Call with a thisValue of undefined here. This makes a difference in OrdinaryCallBindThis (F: the function object; thisArgument: the thisValue passed to Call):

  1. Let thisMode be F.[[ThisMode]].

[…]

  1. If thisMode is strict, let thisValue be thisArgument.
  2. Else,
    1. If thisArgument is undefined or null, then
      1. Let globalEnv be calleeRealm.[[GlobalEnv]].
      2. […]
      3. Let thisValue be globalEnv.[[GlobalThisValue]].
    2. Else,
      1. Let thisValue be ! ToObject(thisArgument).
      2. NOTE: ToObject produces wrapper objects […].

[…]

Note: step 5 sets the actual value of this to the supplied thisArgument in strict mode — undefined in this case. In “sloppy mode”, an undefined or null thisArgument results in this being the global this value.

If IsPropertyReference returns false, then EvaluateCall takes these steps:

  1. Let refEnv be ref.[[Base]].
  2. Assert: refEnv is an Environment Record.
  3. Let thisValue be refEnv.WithBaseObject().

This is where an undefined thisValue may come from: refEnv.WithBaseObject() is always undefined, except in with statements. In this case, thisValue will be the binding object.

There’s also Symbol.unscopables (Docs on MDN) to control the with binding behavior.

To summarize, so far:

function f1(){
  console.log(this);
}

function f2(){
  console.log(this);
}

function f3(){
  console.log(this);
}

const o = {
    f1,
    f2,
    [Symbol.unscopables]: {
      f2: true
    }
  };

f1(); // Logs `globalThis`.

with(o){
  f1(); // Logs `o`.
  f2(); // `f2` is unscopable, so this logs `globalThis`.
  f3(); // `f3` is not on `o`, so this logs `globalThis`.
}

and:

"use strict";

function f(){
  console.log(this);
}

f(); // Logs `undefined`.

// `with` statements are not allowed in strict-mode code.

Note that when evaluating this, it doesn’t matter where a normal function is defined.

.call, .apply, .bind, thisArg, and primitives

Another consequence of step 5 of OrdinaryCallBindThis, in conjunction with step 6.2 (6.b in the spec), is that a primitive this value is coerced to an object only in “sloppy” mode.

To examine this, let’s introduce another source for the this value: the three methods that override the this binding:4

  • Function.prototype.apply(thisArg, argArray)
  • Function.prototype. {call, bind} (thisArg, ...args)

.bind creates a bound function, whose this binding is set to thisArg and cannot change again. .call and .apply call the function immediately, with the this binding set to thisArg.

.call and .apply map directly to Call, using the specified thisArg. .bind creates a bound function with BoundFunctionCreate. These have their own [[Call]] method which looks up the function object’s [[BoundThis]] internal slot.

Examples of setting a custom this value:

function f(){
  console.log(this);
}

const myObj = {},
  g = f.bind(myObj),
  h = (m) => m();

// All of these log `myObj`.
g();
f.bind(myObj)();
f.call(myObj);
h(g);

For objects, this is the same in strict and non-strict mode.

Now, try to supply a primitive value:

function f(){
  console.log(this);
}

const myString = "s",
  g = f.bind(myString);

g();              // Logs `String { "s" }`.
f.call(myString); // Logs `String { "s" }`.

In non-strict mode, primitives are coerced to their object-wrapped form. It’s the same kind of object you get when calling Object("s") or new String("s"). In strict mode, you can use primitives:

"use strict";

function f(){
  console.log(this);
}

const myString = "s",
  g = f.bind(myString);

g();              // Logs `"s"`.
f.call(myString); // Logs `"s"`.

Libraries make use of these methods, e.g. jQuery sets the this to the DOM element selected here:

$("button").click(function(){
  console.log(this); // Logs the clicked button.
});

Constructors, classes, and new

When calling a function as a constructor using the new operator, EvaluateNew calls Construct, which calls the [[Construct]] method. If the function is a base constructor (i.e. not a class extends{}), it sets thisArgument to a new object created from the constructor’s prototype. Properties set on this in the constructor will end up on the resulting instance object. this is implicitly returned, unless you explicitly return your own non-primitive value.

A class is a new way of creating constructor functions, introduced in ECMAScript 2015.

function Old(a){
  this.p = a;
}

const o = new Old(1);

console.log(o);  // Logs `Old { p: 1 }`.

class New{
  constructor(a){
    this.p = a;
  }
}

const n = new New(1);

console.log(n); // Logs `New { p: 1 }`.

Class definitions are implicitly in strict mode:

class A{
  m1(){
    return this;
  }
  m2(){
    const m1 = this.m1;
    
    console.log(m1());
  }
}

new A().m2(); // Logs `undefined`.

super

The exception to the behavior with new is class extends

2 of 16
193

The this keyword behaves differently in JavaScript compared to other languages. In Object Oriented languages, the this keyword refers to the current instance of the class. In JavaScript the value of this is determined by the invocation context of function (context.function()) and where it is called.

1. When used in global context

When you use this in global context, it is bound to global object (window in browser)

document.write(this);  //[object Window]

When you use this inside a function defined in the global context, this is still bound to global object since the function is actually made a method of global context.

function f1()
{
   return this;
}
document.write(f1());  //[object Window]

Above f1 is made a method of global object. Thus we can also call it on window object as follows:

function f()
{
    return this;
}

document.write(window.f()); //[object Window]

2. When used inside object method

When you use this keyword inside an object method, this is bound to the "immediate" enclosing object.

var obj = {
    name: "obj",
    f: function () {
        return this + ":" + this.name;
    }
};
document.write(obj.f());  //[object Object]:obj

Above I have put the word immediate in double quotes. It is to make the point that if you nest the object inside another object, then this is bound to the immediate parent.

var obj = {
    name: "obj1",
    nestedobj: {
        name:"nestedobj",
        f: function () {
            return this + ":" + this.name;
        }
    }            
}

document.write(obj.nestedobj.f()); //[object Object]:nestedobj

Even if you add function explicitly to the object as a method, it still follows above rules, that is this still points to the immediate parent object.

var obj1 = {
    name: "obj1",
}

function returnName() {
    return this + ":" + this.name;
}

obj1.f = returnName; //add method to object
document.write(obj1.f()); //[object Object]:obj1

3. When invoking context-less function

When you use this inside function that is invoked without any context (i.e. not on any object), it is bound to the global object (window in browser)(even if the function is defined inside the object) .

var context = "global";

var obj = {  
    context: "object",
    method: function () {                  
        function f() {
            var context = "function";
            return this + ":" +this.context; 
        };
        return f(); //invoked without context
    }
};

document.write(obj.method()); //[object Window]:global 

Trying it all with functions

We can try above points with functions too. However there are some differences.

  • Above we added members to objects using object literal notation. We can add members to functions by using this. to specify them.
  • Object literal notation creates an instance of object which we can use immediately. With function we may need to first create its instance using new operator.
  • Also in an object literal approach, we can explicitly add members to already defined object using dot operator. This gets added to the specific instance only. However I have added variable to the function prototype so that it gets reflected in all instances of the function.

Below I tried out all the things that we did with Object and this above, but by first creating function instead of directly writing an object.

/********************************************************************* 
  1. When you add variable to the function using this keyword, it 
     gets added to the function prototype, thus allowing all function 
     instances to have their own copy of the variables added.
*********************************************************************/
function functionDef()
{
    this.name = "ObjDefinition";
    this.getName = function(){                
        return this+":"+this.name;
    }
}        

obj1 = new functionDef();
document.write(obj1.getName() + "<br />"); //[object Object]:ObjDefinition   

/********************************************************************* 
   2. Members explicitly added to the function protorype also behave 
      as above: all function instances have their own copy of the 
      variable added.
*********************************************************************/
functionDef.prototype.version = 1;
functionDef.prototype.getVersion = function(){
    return "v"+this.version; //see how this.version refers to the
                             //version variable added through 
                             //prototype
}
document.write(obj1.getVersion() + "<br />"); //v1

/********************************************************************* 
   3. Illustrating that the function variables added by both above 
      ways have their own copies across function instances
*********************************************************************/
functionDef.prototype.incrementVersion = function(){
    this.version = this.version + 1;
}
var obj2 = new functionDef();
document.write(obj2.getVersion() + "<br />"); //v1

obj2.incrementVersion();      //incrementing version in obj2
                              //does not affect obj1 version

document.write(obj2.getVersion() + "<br />"); //v2
document.write(obj1.getVersion() + "<br />"); //v1

/********************************************************************* 
   4. `this` keyword refers to the immediate parent object. If you 
       nest the object through function prototype, then `this` inside 
       object refers to the nested object not the function instance
*********************************************************************/
functionDef.prototype.nestedObj = { name: 'nestedObj', 
                                    getName1 : function(){
                                        return this+":"+this.name;
                                    }                            
                                  };

document.write(obj2.nestedObj.getName1() + "<br />"); //[object Object]:nestedObj

/********************************************************************* 
   5. If the method is on an object's prototype chain, `this` refers 
      to the object the method was called on, as if the method was on 
      the object.
*********************************************************************/
var ProtoObj = { fun: function () { return this.a } };
var obj3 = Object.create(ProtoObj); //creating an object setting ProtoObj
                                    //as its prototype
obj3.a = 999;                       //adding instance member to obj3
document.write(obj3.fun()+"<br />");//999
                                    //calling obj3.fun() makes 
                                    //ProtoObj.fun() to access obj3.a as 
                                    //if fun() is defined on obj3

4. When used inside constructor function.

When the function is used as a constructor (that is when it is called with new keyword), this inside function body points to the new object being constructed.

var myname = "global context";
function SimpleFun()
{
    this.myname = "simple function";
}

var obj1 = new SimpleFun(); //adds myname to obj1
//1. `new` causes `this` inside the SimpleFun() to point to the
//   object being constructed thus adding any member
//   created inside SimipleFun() using this.membername to the
//   object being constructed
//2. And by default `new` makes function to return newly 
//   constructed object if no explicit return value is specified

document.write(obj1.myname); //simple function

5. When used inside function defined on prototype chain

If the method is on an object's prototype chain, this inside such method refers to the object the method was called on, as if the method is defined on the object.

var ProtoObj = {
    fun: function () {
        return this.a;
    }
};
//Object.create() creates object with ProtoObj as its
//prototype and assigns it to obj3, thus making fun() 
//to be the method on its prototype chain

var obj3 = Object.create(ProtoObj);
obj3.a = 999;
document.write(obj3.fun()); //999

//Notice that fun() is defined on obj3's prototype but 
//`this.a` inside fun() retrieves obj3.a   

6. Inside call(), apply() and bind() functions

  • All these methods are defined on Function.prototype.
  • These methods allows to write a function once and invoke it in different context. In other words, they allows to specify the value of this which will be used while the function is being executed. They also take any parameters to be passed to the original function when it is invoked.
  • fun.apply(obj1 [, argsArray]) Sets obj1 as the value of this inside fun() and calls fun() passing elements of argsArray as its arguments.
  • fun.call(obj1 [, arg1 [, arg2 [,arg3 [, ...]]]]) - Sets obj1 as the value of this inside fun() and calls fun() passing arg1, arg2, arg3, ... as its arguments.
  • fun.bind(obj1 [, arg1 [, arg2 [,arg3 [, ...]]]]) - Returns the reference to the function fun with this inside fun bound to obj1 and parameters of fun bound to the parameters specified arg1, arg2, arg3,....
  • By now the difference between apply, call and bind must have become apparent. apply allows to specify the arguments to function as array-like object i.e. an object with a numeric length property and corresponding non-negative integer properties. Whereas call allows to specify the arguments to the function directly. Both apply and call immediately invokes the function in the specified context and with the specified arguments. On the other hand, bind simply returns the function bound to the specified this value and the arguments. We can capture the reference to this returned function by assigning it to a variable and later we can call it any time.
function add(inc1, inc2)
{
    return this.a + inc1 + inc2;
}

var o = { a : 4 };
document.write(add.call(o, 5, 6)+"<br />"); //15
      //above add.call(o,5,6) sets `this` inside
      //add() to `o` and calls add() resulting:
      // this.a + inc1 + inc2 = 
      // `o.a` i.e. 4 + 5 + 6 = 15
document.write(add.apply(o, [5, 6]) + "<br />"); //15
      // `o.a` i.e. 4 + 5 + 6 = 15

var g = add.bind(o, 5, 6);       //g: `o.a` i.e. 4 + 5 + 6
document.write(g()+"<br />");    //15

var h = add.bind(o, 5);          //h: `o.a` i.e. 4 + 5 + ?
document.write(h(6) + "<br />"); //15
      // 4 + 5 + 6 = 15
document.write(h() + "<br />");  //NaN
      //no parameter is passed to h()
      //thus inc2 inside add() is `undefined`
      //4 + 5 + undefined = NaN</code>

7. this inside event handlers

  • When you assign function directly to event handlers of an element, use of this directly inside event handling function refers to the corresponding element. Such direct function assignment can be done using addeventListener method or through the traditional event registration methods like onclick.
  • Similarly, when you use this directly inside the event property (like <button onclick="...this..." >) of the element, it refers to the element.
  • However use of this indirectly through the other function called inside the event handling function or event property resolves to the global object window.
  • The same above behavior is achieved when we attach the function to the event handler using Microsoft's Event Registration model method attachEvent. Instead of assigning the function to the event handler (and the thus making the function method of the element), it calls the function on the event (effectively calling it in global context).

I recommend to better try this in JSFiddle.

<script> 
    function clickedMe() {
       alert(this + " : " + this.tagName + " : " + this.id);
    } 
    document.getElementById("button1").addEventListener("click", clickedMe, false);
    document.getElementById("button2").onclick = clickedMe;
    document.getElementById("button5").attachEvent('onclick', clickedMe);   
</script>

<h3>Using `this` "directly" inside event handler or event property</h3>
<button id="button1">click() "assigned" using addEventListner() </button><br />
<button id="button2">click() "assigned" using click() </button><br />
<button id="button3" onclick="alert(this+ ' : ' + this.tagName + ' : ' + this.id);">used `this` directly in click event property</button>

<h3>Using `this` "indirectly" inside event handler or event property</h3>
<button onclick="alert((function(){return this + ' : ' + this.tagName + ' : ' + this.id;})());">`this` used indirectly, inside function <br /> defined & called inside event property</button><br />

<button id="button4" onclick="clickedMe()">`this` used indirectly, inside function <br /> called inside event property</button> <br />

IE only: <button id="button5">click() "attached" using attachEvent() </button>

8. this in ES6 arrow function

In an arrow function, this will behave like common variables: it will be inherited from its lexical scope. The function's this, where the arrow function is defined, will be the arrow function's this.

So, that's the same behavior as:

(function(){}).bind(this)

See the following code:

const globalArrowFunction = () => {
  return this;
};

console.log(globalArrowFunction()); //window

const contextObject = {
  method1: () => {return this},
  method2: function(){
    return () => {return this};
  }
};

console.log(contextObject.method1()); //window

const contextLessFunction = contextObject.method1;

console.log(contextLessFunction()); //window

console.log(contextObject.method2()()) //contextObject

const innerArrowFunction = contextObject.method2();

console.log(innerArrowFunction()); //contextObject 
🌐
TutorialsPoint
tutorialspoint.com › javascript › javascript_this_keyword.htm
JavaScript - this Keyword
In JavaScript, the 'this' keyword contains the reference to the object. It represents the context of the function or current code. It is used to access the properties and methods of the current object.
🌐
ITNEXT
itnext.io › the-this-keyword-in-javascript-demystified-c389c92de26d
The ‘this’ keyword in JavaScript, demystified | by Mohammed Abdullatif | ITNEXT
December 7, 2021 - You will notice that we have a this object created inside the execution context of Person and that this object has the three properties first_name, last_name and displayName. This tool animates the steps happening behind the scenes in an interesting way that will help you understand how the this object is created and filled. We have now discussed two common cases related to the this keyword binding.