The standard does not define or use the term "wild". I'd be careful "correcting" other people's opinions about what it means, and I'd especially avoid quoting random non-normative internet junk to support my position.
To me, it would mean a pointer that neither refers to a legitimate object, nor is NULL. Possible sources of these types of pointer values might include uninitialized pointer objects, objects that have ceased to exist, computed pointer values, improperly aligned pointer values, accidental corruption of the pointer itself, or what it pointed to, etc.
int main(void)
{
int *p; // uninitialized and non-static; value undefined
{
int i1;
p = &i1; // valid
} // i1 no longer exists; p now invalid
p = (int*)0xABCDEF01; // very likely not the address of a real object
{
int i2;
p = (int*)(((char*)&i2) + 1); // p very likely to not be aligned for int access
}
{
char *oops = (char*)&p;
oops[0] = 'f'; oops[1] = 35; // p was clobbered
}
}
and so on, and so forth. There are all kinds of ways to get an invalid pointer value in C. My favourite has got to be the guy who tried to "save" his objects by writing their addresses to a file. Strangely, when he read back those pointer values during a different run of the program, they didn't point to his objects any more. Fancy, that.
But that's just what wild means to me. Since it's not a normative term, it means whatever the person who spoke or wrote it meant it to mean. Ask him or her.
Answer from janks on Stack OverflowThe standard does not define or use the term "wild". I'd be careful "correcting" other people's opinions about what it means, and I'd especially avoid quoting random non-normative internet junk to support my position.
To me, it would mean a pointer that neither refers to a legitimate object, nor is NULL. Possible sources of these types of pointer values might include uninitialized pointer objects, objects that have ceased to exist, computed pointer values, improperly aligned pointer values, accidental corruption of the pointer itself, or what it pointed to, etc.
int main(void)
{
int *p; // uninitialized and non-static; value undefined
{
int i1;
p = &i1; // valid
} // i1 no longer exists; p now invalid
p = (int*)0xABCDEF01; // very likely not the address of a real object
{
int i2;
p = (int*)(((char*)&i2) + 1); // p very likely to not be aligned for int access
}
{
char *oops = (char*)&p;
oops[0] = 'f'; oops[1] = 35; // p was clobbered
}
}
and so on, and so forth. There are all kinds of ways to get an invalid pointer value in C. My favourite has got to be the guy who tried to "save" his objects by writing their addresses to a file. Strangely, when he read back those pointer values during a different run of the program, they didn't point to his objects any more. Fancy, that.
But that's just what wild means to me. Since it's not a normative term, it means whatever the person who spoke or wrote it meant it to mean. Ask him or her.
A wild pointer in C is a pointer that has not been initialised prior to its first use. From Wikipedia:
Wild pointers are created by omitting necessary initialization prior to first use. Thus, strictly speaking, every pointer in programming languages which do not enforce initialization begins as a wild pointer.
This most often occurs due to jumping over the initialization, not by omitting it. Most compilers are able to warn about this.
eg
int f(int i)
{
char* dp; //dp is a wild pointer
...
}
Videos
{
char *dp = NULL;
/* ... */
{
char c;
dp = &c;
}
/* c falls out of scope */
/* dp is now a dangling pointer */
}
In many languages (e.g., the C programming language) deleting an object from memory explicitly or by destroying the stack frame on return does not alter associated pointers. The pointer still points to the same location in memory even though that location may now be used for other purposes.
wikipedia
so what is the problem if this address allocated with the same or different data type again
Q :
is that the same thing
#include <iostream>
int main(){
int x=4;
int *i=&x;
char *c=(char*)&x;
bool *b=(bool*)&x;
}