Here is a quick start tutorial for gdb:
/* test.c */
/* Sample program to debug. */
#include <stdio.h>
#include <stdlib.h>
int
main (int argc, char **argv)
{
if (argc != 3)
return 1;
int a = atoi (argv[1]);
int b = atoi (argv[2]);
int c = a + b;
printf ("%d\n", c);
return 0;
}
Compile with the -g3 option. g3 includes extra information, such as all the macro definitions present in the program.
gcc -g3 -o test test.c
Load the executable, which now contain the debugging symbols, into gdb:
gdb --annotate=3 test.exe
Now you should find yourself at the gdb prompt. There you can issue commands to gdb. Say you like to place a breakpoint at line 11 and step through the execution, printing the values of the local variables - the following commands sequences will help you do this:
(gdb) break test.c:11
Breakpoint 1 at 0x401329: file test.c, line 11.
(gdb) set args 10 20
(gdb) run
Starting program: c:\Documents and Settings\VMathew\Desktop/test.exe 10 20
[New thread 3824.0x8e8]
Breakpoint 1, main (argc=3, argv=0x3d5a90) at test.c:11
(gdb) n
(gdb) print a
$1 = 10
(gdb) n
(gdb) print b
$2 = 20
(gdb) n
(gdb) print c
$3 = 30
(gdb) c
Continuing.
30
Program exited normally.
(gdb)
In short, the following commands are all you need to get started using gdb:
break file:lineno - sets a breakpoint in the file at lineno.
set args - sets the command line arguments.
run - executes the debugged program with the given command line arguments.
next (n) and step (s) - step program and step program until it
reaches a different source line, respectively.
print - prints a local variable
bt - print backtrace of all stack frames
c - continue execution.
Type help at the (gdb) prompt to get a list and description of all valid commands.
Answer from Vijay Mathew on Stack OverflowHow many of you actually use GDB from the terminal?
Using gdb debugger in an efficient way
debugging - How to step-into, step-over and step-out with GDB? - Unix & Linux Stack Exchange
What can we do to speed up the GNU gdb debugger? It is horribly slow for me when using the Qt framework on Windows.
Videos
Here is a quick start tutorial for gdb:
/* test.c */
/* Sample program to debug. */
#include <stdio.h>
#include <stdlib.h>
int
main (int argc, char **argv)
{
if (argc != 3)
return 1;
int a = atoi (argv[1]);
int b = atoi (argv[2]);
int c = a + b;
printf ("%d\n", c);
return 0;
}
Compile with the -g3 option. g3 includes extra information, such as all the macro definitions present in the program.
gcc -g3 -o test test.c
Load the executable, which now contain the debugging symbols, into gdb:
gdb --annotate=3 test.exe
Now you should find yourself at the gdb prompt. There you can issue commands to gdb. Say you like to place a breakpoint at line 11 and step through the execution, printing the values of the local variables - the following commands sequences will help you do this:
(gdb) break test.c:11
Breakpoint 1 at 0x401329: file test.c, line 11.
(gdb) set args 10 20
(gdb) run
Starting program: c:\Documents and Settings\VMathew\Desktop/test.exe 10 20
[New thread 3824.0x8e8]
Breakpoint 1, main (argc=3, argv=0x3d5a90) at test.c:11
(gdb) n
(gdb) print a
$1 = 10
(gdb) n
(gdb) print b
$2 = 20
(gdb) n
(gdb) print c
$3 = 30
(gdb) c
Continuing.
30
Program exited normally.
(gdb)
In short, the following commands are all you need to get started using gdb:
break file:lineno - sets a breakpoint in the file at lineno.
set args - sets the command line arguments.
run - executes the debugged program with the given command line arguments.
next (n) and step (s) - step program and step program until it
reaches a different source line, respectively.
print - prints a local variable
bt - print backtrace of all stack frames
c - continue execution.
Type help at the (gdb) prompt to get a list and description of all valid commands.
Start gdb with the executable as a parameter, so that it knows which program you want to debug:
gdb ./myprogram
Then you should be able to set breakpoints. For example:
b myfile.cpp:25
b some_function
Here is a quick start tutorial for gdb:
/* test.c */
/* Sample program to debug. */
#include <stdio.h>
#include <stdlib.h>
int
main (int argc, char **argv)
{
if (argc != 3)
return 1;
int a = atoi (argv[1]);
int b = atoi (argv[2]);
int c = a + b;
printf ("%d\n", c);
return 0;
}
Compile with the -g3 option. g3 includes extra information, such as all the macro definitions present in the program.
gcc -g3 -o test test.c
Load the executable, which now contain the debugging symbols, into gdb:
gdb --annotate=3 test.exe
Now you should find yourself at the gdb prompt. There you can issue commands to gdb. Say you like to place a breakpoint at line 11 and step through the execution, printing the values of the local variables - the following commands sequences will help you do this:
(gdb) break test.c:11
Breakpoint 1 at 0x401329: file test.c, line 11.
(gdb) set args 10 20
(gdb) run
Starting program: c:\Documents and Settings\VMathew\Desktop/test.exe 10 20
[New thread 3824.0x8e8]
Breakpoint 1, main (argc=3, argv=0x3d5a90) at test.c:11
(gdb) n
(gdb) print a
$1 = 10
(gdb) n
(gdb) print b
$2 = 20
(gdb) n
(gdb) print c
$3 = 30
(gdb) c
Continuing.
30
Program exited normally.
(gdb)
In short, the following commands are all you need to get started using gdb:
break file:lineno - sets a breakpoint in the file at lineno.
set args - sets the command line arguments.
run - executes the debugged program with the given command line arguments.
next (n) and step (s) - step program and step program until it
reaches a different source line, respectively.
print - prints a local variable
bt - print backtrace of all stack frames
c - continue execution.
Type help at the (gdb) prompt to get a list and description of all valid commands.
Answer from Vijay Mathew on Stack OverflowCurious how many of you use raw GDB when debugging C programs. Is it worth learning? Or is it better to find some front end program with buttons / watch-windows etc.?
help running provides some hints:
There are step and next instuctions (and also nexti and stepi).
(gdb) help next
Step program, proceeding through subroutine calls.
Usage: next [N]
Unlike "step", if the current source line calls a subroutine,
this command does not enter the subroutine, but instead steps over
the call, in effect treating it as a single source line.
So we can see that step steps into subroutines, but next will step over subroutines.
The step and stepi (and the next and nexti) are distinguishing by "line" or "instruction" increments.
step -- Step program until it reaches a different source line
stepi -- Step one instruction exactly
Related is finish:
(gdb) help finish
Execute until selected stack frame returns.
Usage: finish
Upon return, the value returned is printed and put in the value history.
A lot more useful information is at https://sourceware.org/gdb/onlinedocs/gdb/Continuing-and-Stepping.html
Use command 'finish'; this sometimes does the same thing as 'step-out'. It'll finish what the stack is doing (a function, usually), and go to the next line after that. Look up the command for more info.