Here is a quick start tutorial for gdb:
/* test.c */
/* Sample program to debug. */
#include <stdio.h>
#include <stdlib.h>
int
main (int argc, char **argv)
{
if (argc != 3)
return 1;
int a = atoi (argv[1]);
int b = atoi (argv[2]);
int c = a + b;
printf ("%d\n", c);
return 0;
}
Compile with the -g3 option. g3 includes extra information, such as all the macro definitions present in the program.
gcc -g3 -o test test.c
Load the executable, which now contain the debugging symbols, into gdb:
gdb --annotate=3 test.exe
Now you should find yourself at the gdb prompt. There you can issue commands to gdb. Say you like to place a breakpoint at line 11 and step through the execution, printing the values of the local variables - the following commands sequences will help you do this:
(gdb) break test.c:11
Breakpoint 1 at 0x401329: file test.c, line 11.
(gdb) set args 10 20
(gdb) run
Starting program: c:\Documents and Settings\VMathew\Desktop/test.exe 10 20
[New thread 3824.0x8e8]
Breakpoint 1, main (argc=3, argv=0x3d5a90) at test.c:11
(gdb) n
(gdb) print a
$1 = 10
(gdb) n
(gdb) print b
$2 = 20
(gdb) n
(gdb) print c
$3 = 30
(gdb) c
Continuing.
30
Program exited normally.
(gdb)
In short, the following commands are all you need to get started using gdb:
break file:lineno - sets a breakpoint in the file at lineno.
set args - sets the command line arguments.
run - executes the debugged program with the given command line arguments.
next (n) and step (s) - step program and step program until it
reaches a different source line, respectively.
print - prints a local variable
bt - print backtrace of all stack frames
c - continue execution.
Type help at the (gdb) prompt to get a list and description of all valid commands.
Answer from Vijay Mathew on Stack OverflowVideos
GDB Quick Guide
I found out I didn't need cgdb by the way, it was better to just gdb -tui on Debian. Less modem noise in the form of uninterpreted escape sequences too.
So it paid up to do gdb -help.
The guide doesn't mention watch or watch -l but it points to Debugging with GDB where you can find everything.
It is a good quick start, with a couple of examples.
Here is a quick start tutorial for gdb:
/* test.c */
/* Sample program to debug. */
#include <stdio.h>
#include <stdlib.h>
int
main (int argc, char **argv)
{
if (argc != 3)
return 1;
int a = atoi (argv[1]);
int b = atoi (argv[2]);
int c = a + b;
printf ("%d\n", c);
return 0;
}
Compile with the -g3 option. g3 includes extra information, such as all the macro definitions present in the program.
gcc -g3 -o test test.c
Load the executable, which now contain the debugging symbols, into gdb:
gdb --annotate=3 test.exe
Now you should find yourself at the gdb prompt. There you can issue commands to gdb. Say you like to place a breakpoint at line 11 and step through the execution, printing the values of the local variables - the following commands sequences will help you do this:
(gdb) break test.c:11
Breakpoint 1 at 0x401329: file test.c, line 11.
(gdb) set args 10 20
(gdb) run
Starting program: c:\Documents and Settings\VMathew\Desktop/test.exe 10 20
[New thread 3824.0x8e8]
Breakpoint 1, main (argc=3, argv=0x3d5a90) at test.c:11
(gdb) n
(gdb) print a
$1 = 10
(gdb) n
(gdb) print b
$2 = 20
(gdb) n
(gdb) print c
$3 = 30
(gdb) c
Continuing.
30
Program exited normally.
(gdb)
In short, the following commands are all you need to get started using gdb:
break file:lineno - sets a breakpoint in the file at lineno.
set args - sets the command line arguments.
run - executes the debugged program with the given command line arguments.
next (n) and step (s) - step program and step program until it
reaches a different source line, respectively.
print - prints a local variable
bt - print backtrace of all stack frames
c - continue execution.
Type help at the (gdb) prompt to get a list and description of all valid commands.
Start gdb with the executable as a parameter, so that it knows which program you want to debug:
gdb ./myprogram
Then you should be able to set breakpoints. For example:
b myfile.cpp:25
b some_function
Besides things that have already been posted i also use:
- a .gdbinit file for STL containers
signal SIGNAL noprint nostopfor some custom signals that are of no real interest when debugging- C-Casts to dereference pointers
- catchpoints (catch throw, catch catch)
- condition for conditional break- and watchpoints
- rarely gdbserver for remote debugging
- gdb program coredump, for those embarassing segfaults ;)
PS: One reason i personally love gdb btw. is that it supports tab-completion for nearly everything (gdb commands, symbols in the symbol table, functions, memberfunctions etc.). This is a fairly good productivity boost in my opinion.
Scripting is a nice GDB feature.
- First you set a breakpoint, like: b someFunction\n.
- Then you run command: commands\n. GDB will ask for commands for that breakpoint.
- Common scenario is to print some value and then continue, so you will enter: p someVar\n continue\n.
- To end the script press: Ctrl-D
After running program you will see your script executed occasionally when the breakpoint occurs.