Actually, you can use a literal 0 anyplace you would use NULL.
Section 6.3.2.3p3 of the C standard states:
An integer constant expression with the value 0, or such an expression cast to type
void *, is called a null pointer constant. If a null pointer constant is converted to a pointer type, the resulting pointer, called a null pointer, is guaranteed to compare unequal to a pointer to any object or function.
And section 7.19p3 states:
The macros are:
NULLwhich expands to an implementation-defined null pointer constant
So 0 qualifies as a null pointer constant, as does (void *)0 and NULL. The use of NULL is preferred however as it makes it more evident to the reader that a null pointer is being used and not the integer value 0.
Actually, you can use a literal 0 anyplace you would use NULL.
Section 6.3.2.3p3 of the C standard states:
An integer constant expression with the value 0, or such an expression cast to type
void *, is called a null pointer constant. If a null pointer constant is converted to a pointer type, the resulting pointer, called a null pointer, is guaranteed to compare unequal to a pointer to any object or function.
And section 7.19p3 states:
The macros are:
NULLwhich expands to an implementation-defined null pointer constant
So 0 qualifies as a null pointer constant, as does (void *)0 and NULL. The use of NULL is preferred however as it makes it more evident to the reader that a null pointer is being used and not the integer value 0.
NULL is used to make it clear it is a pointer type.
Ideally, the C implementation would define NULL as ((void *) 0) or something equivalent, and programmers would always use NULL when they want a null pointer constant.
If this is done, then, when a programmer has, for example, an int *x and accidentally writes *x = NULL;, then the compiler can recognize that a mistake has been made, because the left side of = has type int, and the right side has type void *, and this is not a proper combination for assignment.
In contrast, if the programmer accidentally writes *x = 0; instead of x = 0;, then the compiler cannot recognize this mistake, because the left side has type int, and the right side has type int, and that is a valid combination.
Thus, when NULL is defined well and is used, mistakes are detected earlier.
In particular answer to your question “Is there a context in which just plain literal 0 would not work exactly the same?”:
- In correct code,
NULLand0may be used interchangeably as null pointer constants. 0will function as an integer (non-pointer) constant, butNULLmight not, depending on how the C implementation defines it.- For the purpose of detecting errors,
NULLand0do not work exactly the same; usingNULLwith a good definition serves to help detect some mistakes that using0does not.
The C standard allows 0 to be used for null pointer constants for historic reasons. However, this is not beneficial except for allowing previously written code to compile in compilers using current C standards. New code should avoid using 0 as a null pointer constant.
Videos
0 being an int like other integers, sizeof(0) will yield 4 bytes.
sizeof(NULL) will yield 8 bytes. In binary system, it is 8x8=64 bits, all bits with 0.
Pointers have 8 bytes allocated against characters with 1 bytes and integers 4 bytes. Is 8 bytes the maximum bytes for any datatype? I believe so as NULL is set to 8 bytes apparently for that reason to take care NULL denotes 0 for all datatypes.
In C and C++, pointers are inherently unsafe, that is, when you dereference a pointer, it is your own responsibility to make sure it points somewhere valid; this is part of what "manual memory management" is about (as opposed to the automatic memory management schemes implemented in languages like Java, PHP, or the .NET runtime, which won't allow you to create invalid references without considerable effort).
A common solution that catches many errors is to set all pointers that don't point to anything as NULL (or, in correct C++, 0), and checking for that before accessing the pointer. Specifically, it is common practice to initialize all pointers to NULL (unless you already have something to point them at when you declare them), and set them to NULL when you delete or free() them (unless they go out of scope immediately after that). Example (in C, but also valid C++):
void fill_foo(int* foo) {
*foo = 23; // this will crash and burn if foo is NULL
}
A better version:
void fill_foo(int* foo) {
if (!foo) { // this is the NULL check
printf("This is wrong\n");
return;
}
*foo = 23;
}
Without the null check, passing a NULL pointer into this function will cause a segfault, and there is nothing you can do - the OS will simply kill your process and maybe core-dump or pop up a crash report dialog. With the null check in place, you can perform proper error handling and recover gracefully - correct the problem yourself, abort the current operation, write a log entry, notify the user, whatever is appropriate.
The other answers pretty much covered your exact question. A null check is made to be sure that the pointer you received actually points to a valid instance of a type (objects, primitives, etc).
I'm going to add my own piece of advice here, though. Avoid null checks. :) Null checks (and other forms of Defensive Programming) clutter code up, and actually make it more error prone than other error-handling techniques.
My favorite technique when it comes to object pointers is to use the Null Object pattern. That means returning a (pointer - or even better, reference to an) empty array or list instead of null, or returning an empty string ("") instead of null, or even the string "0" (or something equivalent to "nothing" in the context) where you expect it to be parsed to an integer.
As a bonus, here's a little something you might not have known about the null pointer, which was (first formally) implemented by C.A.R. Hoare for the Algol W language in 1965.
I call it my billion-dollar mistake. It was the invention of the null reference in 1965. At that time, I was designing the first comprehensive type system for references in an object oriented language (ALGOL W). My goal was to ensure that all use of references should be absolutely safe, with checking performed automatically by the compiler. But I couldn't resist the temptation to put in a null reference, simply because it was so easy to implement. This has led to innumerable errors, vulnerabilities, and system crashes, which have probably caused a billion dollars of pain and damage in the last forty years.
Note: This answer applies to the C language, not C++.
Null Pointers
The integer constant literal 0 has different meanings depending upon the context in which it's used. In all cases, it is still an integer constant with the value 0, it is just described in different ways.
If a pointer is being compared to the constant literal 0, then this is a check to see if the pointer is a null pointer. This 0 is then referred to as a null pointer constant. The C standard defines that 0 cast to the type void * is both a null pointer and a null pointer constant.
Additionally, to help readability, the macro NULL is provided in the header file stddef.h. Depending upon your compiler it might be possible to #undef NULL and redefine it to something wacky.
Therefore, here are some valid ways to check for a null pointer:
if (pointer == NULL)
NULL is defined to compare equal to a null pointer. It is implementation defined what the actual definition of NULL is, as long as it is a valid null pointer constant.
if (pointer == 0)
0 is another representation of the null pointer constant.
if (!pointer)
This if statement implicitly checks "is not 0", so we reverse that to mean "is 0".
The following are INVALID ways to check for a null pointer:
int mynull = 0;
<some code>
if (pointer == mynull)
To the compiler this is not a check for a null pointer, but an equality check on two variables. This might work if mynull never changes in the code and the compiler optimizations constant fold the 0 into the if statement, but this is not guaranteed and the compiler has to produce at least one diagnostic message (warning or error) according to the C Standard.
Note that the value of a null pointer in the C language does not matter on the underlying architecture. If the underlying architecture has a null pointer value defined as address 0xDEADBEEF, then it is up to the compiler to sort this mess out.
As such, even on this funny architecture, the following ways are still valid ways to check for a null pointer:
if (!pointer)
if (pointer == NULL)
if (pointer == 0)
The following are INVALID ways to check for a null pointer:
#define MYNULL (void *) 0xDEADBEEF
if (pointer == MYNULL)
if (pointer == 0xDEADBEEF)
as these are seen by a compiler as normal comparisons.
Null Characters
'\0' is defined to be a null character - that is a character with all bits set to zero. '\0' is (like all character literals) an integer constant, in this case with the value zero. So '\0' is completely equivalent to an unadorned 0 integer constant - the only difference is in the intent that it conveys to a human reader ("I'm using this as a null character.").
'\0' has nothing to do with pointers. However, you may see something similar to this code:
if (!*char_pointer)
checks if the char pointer is pointing at a null character.
if (*char_pointer)
checks if the char pointer is pointing at a non-null character.
Don't get these confused with null pointers. Just because the bit representation is the same, and this allows for some convenient cross over cases, they are not really the same thing.
References
See Question 5.3 of the comp.lang.c FAQ for more. See this pdf for the C standard. Check out sections 6.3.2.3 Pointers, paragraph 3.
It appears that a number of people misunderstand what the differences between NULL, '\0' and 0 are. So, to explain, and in attempt to avoid repeating things said earlier:
A constant expression of type int with the value 0, or an expression of this type, cast to type void * is a null pointer constant, which if converted to a pointer becomes a null pointer. It is guaranteed by the standard to compare unequal to any pointer to any object or function.
NULL is a macro, defined in as a null pointer constant.
\0 is a construction used to represent the null character, used to terminate a string.
A null character is a byte which has all its bits set to 0.
In my experience, tests of the form if (ptr) or if (!ptr) are preferred. They do not depend on the definition of the symbol NULL. They do not expose the opportunity for the accidental assignment. And they are clear and succinct.
Edit: As SoapBox points out in a comment, they are compatible with C++ classes such as unique_ptr, shared_ptr, auto_ptr that are objects that act as pointers and which provide a conversion to bool to enable exactly this idiom. For these objects, an explicit comparison to NULL would have to invoke a conversion to pointer which may have other semantic side effects or be more expensive than the simple existence check that the bool conversion implies.
I have a preference for code that says what it means without unneeded text. if (ptr != NULL) has the same meaning as if (ptr) but at the cost of redundant specificity. The next logical thing is to write if ((ptr != NULL) == TRUE) and that way lies madness. The C language is clear that a boolean tested by if, while or the like has a specific meaning of non-zero value is true and zero is false. Redundancy does not make it clearer.
if (foo) is clear enough. Use it.