What you'll see sometimes is the following:
class Abstract1:
"""Some description that tells you it's abstract,
often listing the methods you're expected to supply."""
def aMethod(self):
raise NotImplementedError("Should have implemented this")
Because Python doesn't have (and doesn't need) a formal Interface contract, the Java-style distinction between abstraction and interface doesn't exist. If someone goes through the effort to define a formal interface, it will also be an abstract class. The only differences would be in the stated intent in the docstring.
And the difference between abstract and interface is a hairsplitting thing when you have duck typing.
Java uses interfaces because it doesn't have multiple inheritance.
Because Python has multiple inheritance, you may also see something like this
class SomeAbstraction:
pass # lots of stuff - but missing something
class Mixin1:
def something(self):
pass # one implementation
class Mixin2:
def something(self):
pass # another
class Concrete1(SomeAbstraction, Mixin1):
pass
class Concrete2(SomeAbstraction, Mixin2):
pass
This uses a kind of abstract superclass with mixins to create concrete subclasses that are disjoint.
Answer from S.Lott on Stack OverflowWhat you'll see sometimes is the following:
class Abstract1:
"""Some description that tells you it's abstract,
often listing the methods you're expected to supply."""
def aMethod(self):
raise NotImplementedError("Should have implemented this")
Because Python doesn't have (and doesn't need) a formal Interface contract, the Java-style distinction between abstraction and interface doesn't exist. If someone goes through the effort to define a formal interface, it will also be an abstract class. The only differences would be in the stated intent in the docstring.
And the difference between abstract and interface is a hairsplitting thing when you have duck typing.
Java uses interfaces because it doesn't have multiple inheritance.
Because Python has multiple inheritance, you may also see something like this
class SomeAbstraction:
pass # lots of stuff - but missing something
class Mixin1:
def something(self):
pass # one implementation
class Mixin2:
def something(self):
pass # another
class Concrete1(SomeAbstraction, Mixin1):
pass
class Concrete2(SomeAbstraction, Mixin2):
pass
This uses a kind of abstract superclass with mixins to create concrete subclasses that are disjoint.
What is the difference between abstract class and interface in Python?
An interface, for an object, is a set of methods and attributes on that object.
In Python, we can use an abstract base class to define and enforce an interface.
Using an Abstract Base Class
For example, say we want to use one of the abstract base classes from the collections module:
import collections
class MySet(collections.Set):
pass
If we try to use it, we get an TypeError because the class we created does not support the expected behavior of sets:
>>> MySet()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class MySet with abstract methods
__contains__, __iter__, __len__
So we are required to implement at least __contains__, __iter__, and __len__. Let's use this implementation example from the documentation:
class ListBasedSet(collections.Set):
"""Alternate set implementation favoring space over speed
and not requiring the set elements to be hashable.
"""
def __init__(self, iterable):
self.elements = lst = []
for value in iterable:
if value not in lst:
lst.append(value)
def __iter__(self):
return iter(self.elements)
def __contains__(self, value):
return value in self.elements
def __len__(self):
return len(self.elements)
s1 = ListBasedSet('abcdef')
s2 = ListBasedSet('defghi')
overlap = s1 & s2
Implementation: Creating an Abstract Base Class
We can create our own Abstract Base Class by setting the metaclass to abc.ABCMeta and using the abc.abstractmethod decorator on relevant methods. The metaclass will be add the decorated functions to the __abstractmethods__ attribute, preventing instantiation until those are defined.
import abc
For example, "effable" is defined as something that can be expressed in words. Say we wanted to define an abstract base class that is effable, in Python 2:
class Effable(object):
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def __str__(self):
raise NotImplementedError('users must define __str__ to use this base class')
Or in Python 3, with the slight change in metaclass declaration:
class Effable(object, metaclass=abc.ABCMeta):
@abc.abstractmethod
def __str__(self):
raise NotImplementedError('users must define __str__ to use this base class')
Now if we try to create an effable object without implementing the interface:
class MyEffable(Effable):
pass
and attempt to instantiate it:
>>> MyEffable()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class MyEffable with abstract methods __str__
We are told that we haven't finished the job.
Now if we comply by providing the expected interface:
class MyEffable(Effable):
def __str__(self):
return 'expressable!'
we are then able to use the concrete version of the class derived from the abstract one:
>>> me = MyEffable()
>>> print(me)
expressable!
There are other things we could do with this, like register virtual subclasses that already implement these interfaces, but I think that is beyond the scope of this question. The other methods demonstrated here would have to adapt this method using the abc module to do so, however.
Conclusion
We have demonstrated that the creation of an Abstract Base Class defines interfaces for custom objects in Python.
Videos
Interfaces
An interface is a contract: The person writing the interface says, "hey, I accept things looking that way", and the person using the interface says "OK, the class I write looks that way".
An interface is an empty shell. There are only the signatures of the methods, which implies that the methods do not have a body. The interface can't do anything. It's just a pattern.
For example (pseudo code):
// I say all motor vehicles should look like this:
interface MotorVehicle
{
void run();
int getFuel();
}
// My team mate complies and writes vehicle looking that way
class Car implements MotorVehicle
{
int fuel;
void run()
{
print("Wrroooooooom");
}
int getFuel()
{
return this.fuel;
}
}
Implementing an interface consumes very little CPU, because it's not a class, just a bunch of names, and therefore there isn't any expensive look-up to do. It's great when it matters, such as in embedded devices.
Abstract classes
Abstract classes, unlike interfaces, are classes. They are more expensive to use, because there is a look-up to do when you inherit from them.
Abstract classes look a lot like interfaces, but they have something more: You can define a behavior for them. It's more about a person saying, "these classes should look like that, and they have that in common, so fill in the blanks!".
For example:
// I say all motor vehicles should look like this:
abstract class MotorVehicle
{
int fuel;
// They ALL have fuel, so lets implement this for everybody.
int getFuel()
{
return this.fuel;
}
// That can be very different, force them to provide their
// own implementation.
abstract void run();
}
// My teammate complies and writes vehicle looking that way
class Car extends MotorVehicle
{
void run()
{
print("Wrroooooooom");
}
}
Implementation
While abstract classes and interfaces are supposed to be different concepts, the implementations make that statement sometimes untrue. Sometimes, they are not even what you think they are.
In Java, this rule is strongly enforced, while in PHP, interfaces are abstract classes with no method declared.
In Python, abstract classes are more a programming trick you can get from the ABC module and is actually using metaclasses, and therefore classes. And interfaces are more related to duck typing in this language and it's a mix between conventions and special methods that call descriptors (the __method__ methods).
As usual with programming, there is theory, practice, and practice in another language
The key technical differences between an abstract class and an interface are:
Abstract classes can have constants, members, method stubs (methods without a body) and defined methods, whereas interfaces can only have constants and methods stubs.
Methods and members of an abstract class can be defined with any visibility, whereas all methods of an interface must be defined as
public(they are defined public by default).When inheriting an abstract class, a concrete child class must define the abstract methods, whereas an abstract class can extend another abstract class and abstract methods from the parent class don't have to be defined.
Similarly, an interface extending another interface is not responsible for implementing methods from the parent interface. This is because interfaces cannot define any implementation.
A child class can only extend a single class (abstract or concrete), whereas an interface can extend or a class can implement multiple other interfaces.
A child class can define abstract methods with the same or less restrictive visibility, whereas a class implementing an interface must define the methods with the exact same visibility (public).