Remember that C and C++ are actually completely different languages. They share some common syntax, but C is a procedural language and C++ is object oriented, so they are different programming paradigms.
gcc should work just fine as a C compiler. I believe MinGW uses it. It also has flags you can specify to make sure it's using the right version of C (e.g. C99).
If you want to stick with C then you simply won't be able to use new (it's not part of the C language) but there shouldn't be any problems with moving to C++ for a shared library, just so long as you put your Object Oriented hat on when you do.
I'd suggest you just stick with the language you are more comfortable with. The fact that you're using new suggests that will be C++, but it's up to you.
Remember that C and C++ are actually completely different languages. They share some common syntax, but C is a procedural language and C++ is object oriented, so they are different programming paradigms.
gcc should work just fine as a C compiler. I believe MinGW uses it. It also has flags you can specify to make sure it's using the right version of C (e.g. C99).
If you want to stick with C then you simply won't be able to use new (it's not part of the C language) but there shouldn't be any problems with moving to C++ for a shared library, just so long as you put your Object Oriented hat on when you do.
I'd suggest you just stick with the language you are more comfortable with. The fact that you're using new suggests that will be C++, but it's up to you.
You can use e.g. GCC as a C compiler. To ensure it's compiling as C, use the
-x coption. You can also specify a particular version of the C standard, e.g.-std=c99. To ensure you're not using any GCC-specific extensions, you can use the-pedanticflag. I'm sure other compilers have similar options.mallocandcallocare indeed how you allocate memory in C.That's up to you.* You say that you want to be cross-platform, but C++ is essentially just as "cross-platform" as C. However, if you're working on embedded platforms (e.g. microcontrollers or DSPs), you may not find C++ compilers for them.
No,
newanddeleteare not supported in C.
* In my opinion, though, you should strongly consider switching to C++ for any application of non-trivial complexity. C++ has far more powerful high-level constructs than C (e.g. smart pointers, containers, templates) that simplify a lot of the tedious work in C. It takes a while to learn how to use them effectively, but in the long run, they will be worth it.
Videos
Your observations are correct. C++ is a complicated beast, and the new keyword was used to distinguish between something that needed delete later and something that would be automatically reclaimed. In Java and C#, they dropped the delete keyword because the garbage collector would take care of it for you.
The problem then is why did they keep the new keyword? Without talking to the people who wrote the language it's kind of difficult to answer. My best guesses are listed below:
- It was semantically correct. If you were familiar with C++, you knew that the
newkeyword creates an object on the heap. So, why change expected behavior? - It calls attention to the fact that you are instantiating an object rather than calling a method. With Microsoft code style recommendations, method names start with capital letters so there can be confusion.
Ruby is somewhere in between Python and Java/C# in it's use of new. Basically you instantiate an object like this:
f = Foo.new()
It's not a keyword, it's a static method for the class. What that means is that if you want a singleton, you can override the default implementation of new() to return the same instance every time. It's not necessarily recommended, but it's possible.
In short, you are right. The new keyword is superfluous in languages like Java and C#. Here are some insights from Bruce Eckel who was a member of C++ Standard Committee in 1990s and later published books on Java:
[T]here needed to be some way to distinguish heap objects from stack objects. To solve this problem, the new keyword was appropriated from Smalltalk. To create a stack object, you simply declare it, as in Cat x; or, with arguments, Cat x("mittens");. To create a heap object, you use new, as in new Cat; or new Cat("mittens");. Given the constraints, this is an elegant and consistent solution.
Enter Java, after deciding that everything C++ is badly done and overly complex. The irony here is that Java could and did make the decision to throw away stack allocation (pointedly ignoring the debacle of primitives, which I've addressed elsewhere). And since all objects are allocated on the heap, there's no need to distinguish between stack and heap allocation. They could easily have said Cat x = Cat() or Cat x = Cat("mittens"). Or even better, incorporated type inference to eliminate the repetition (but that -- and other features like closures -- would have taken "too long" so we are stuck with the mediocre version of Java instead; type inference has been discussed but I will lay odds it won't happen. And shouldn't, given the problems in adding new features to Java).
Method 1 (using new)
- Allocates memory for the object on the free store (This is frequently the same thing as the heap)
- Requires you to explicitly
deleteyour object later. (If you don't delete it, you could create a memory leak) - Memory stays allocated until you
deleteit. (i.e. you couldreturnan object that you created usingnew) - The example in the question will leak memory unless the pointer is
deleted; and it should always be deleted, regardless of which control path is taken, or if exceptions are thrown.
Method 2 (not using new)
- Allocates memory for the object on the stack (where all local variables go) There is generally less memory available for the stack; if you allocate too many objects, you risk stack overflow.
- You won't need to
deleteit later. - Memory is no longer allocated when it goes out of scope. (i.e. you shouldn't
returna pointer to an object on the stack)
As far as which one to use; you choose the method that works best for you, given the above constraints.
Some easy cases:
- If you don't want to worry about calling
delete, (and the potential to cause memory leaks) you shouldn't usenew. - If you'd like to return a pointer to your object from a function, you must use
new
There is an important difference between the two.
Everything not allocated with new behaves much like value types in C# (and people often say that those objects are allocated on the stack, which is probably the most common/obvious case, but not always true). More precisely, objects allocated without using new have automatic storage duration
Everything allocated with new is allocated on the heap, and a pointer to it is returned, exactly like reference types in C#.
Anything allocated on the stack has to have a constant size, determined at compile-time (the compiler has to set the stack pointer correctly, or if the object is a member of another class, it has to adjust the size of that other class). That's why arrays in C# are reference types. They have to be, because with reference types, we can decide at runtime how much memory to ask for. And the same applies here. Only arrays with constant size (a size that can be determined at compile-time) can be allocated with automatic storage duration (on the stack). Dynamically sized arrays have to be allocated on the heap, by calling new.
(And that's where any similarity to C# stops)
Now, anything allocated on the stack has "automatic" storage duration (you can actually declare a variable as auto, but this is the default if no other storage type is specified so the keyword isn't really used in practice, but this is where it comes from)
Automatic storage duration means exactly what it sounds like, the duration of the variable is handled automatically. By contrast, anything allocated on the heap has to be manually deleted by you. Here's an example:
void foo() {
bar b;
bar* b2 = new bar();
}
This function creates three values worth considering:
On line 1, it declares a variable b of type bar on the stack (automatic duration).
On line 2, it declares a bar pointer b2 on the stack (automatic duration), and calls new, allocating a bar object on the heap. (dynamic duration)
When the function returns, the following will happen:
First, b2 goes out of scope (order of destruction is always opposite of order of construction). But b2 is just a pointer, so nothing happens, the memory it occupies is simply freed. And importantly, the memory it points to (the bar instance on the heap) is NOT touched. Only the pointer is freed, because only the pointer had automatic duration.
Second, b goes out of scope, so since it has automatic duration, its destructor is called, and the memory is freed.
And the barinstance on the heap? It's probably still there. No one bothered to delete it, so we've leaked memory.
From this example, we can see that anything with automatic duration is guaranteed to have its destructor called when it goes out of scope. That's useful. But anything allocated on the heap lasts as long as we need it to, and can be dynamically sized, as in the case of arrays. That is also useful. We can use that to manage our memory allocations. What if the Foo class allocated some memory on the heap in its constructor, and deleted that memory in its destructor. Then we could get the best of both worlds, safe memory allocations that are guaranteed to be freed again, but without the limitations of forcing everything to be on the stack.
And that is pretty much exactly how most C++ code works.
Look at the standard library's std::vector for example. That is typically allocated on the stack, but can be dynamically sized and resized. And it does this by internally allocating memory on the heap as necessary. The user of the class never sees this, so there's no chance of leaking memory, or forgetting to clean up what you allocated.
This principle is called RAII (Resource Acquisition is Initialization), and it can be extended to any resource that must be acquired and released. (network sockets, files, database connections, synchronization locks). All of them can be acquired in the constructor, and released in the destructor, so you're guaranteed that all resources you acquire will get freed again.
As a general rule, never use new/delete directly from your high level code. Always wrap it in a class that can manage the memory for you, and which will ensure it gets freed again. (Yes, there may be exceptions to this rule. In particular, smart pointers require you to call new directly, and pass the pointer to its constructor, which then takes over and ensures delete is called correctly. But this is still a very important rule of thumb)
Sometimes people choose to write "new" before declaring an array or calling a function. But there are some who say it is bad and people should do without it.
But... If you can do without "new", why do people use it in the first place? Everyone talks about pros vs cons but no one talks about what is this "new" and what purpose does it serve.
They both allocate memory on the heap. Am I correct?