Hi! So, yours is actually a sophisticated question that masquerades as a simple one, so I'll try to answer this in a way that conveys the concept while perhaps alluding to some of its problems. At its heart, the null hypothesis is a sort of "straw man" that is defined by a researcher at the beginning of an experiment that usually represents a state of affairs that would be expected to occur if the researcher's proposal were false. Note that a null hypothesis is entirely imaginary, and it has nothing to do with the actual state of the world. It is contrived, usually to show that the actual state of the world is inconsistent with the null hypothesis. Suppose a researcher is trying to determine whether the heights of men and women are different. A suitable null hypothesis might be that the difference of the two population averages (height of men and height of women) is equal to zero. Then the researcher would conduct his or her experiment by measuring the heights of many men and women. When it comes time to draw a statistical conclusion, he or she will compute the probability that the observed data (the set of heights) could have come from the null hypothesis (i.e., a world where there is no difference). This probability is called a "p-value". Conceptually, this is similar to a "proof by contradiction," in which we assert that, if the probability is very small that the data could have originated from the null hypothesis, it must not be true. This is what is meant by "rejecting the null hypothesis". It is different from a proof by contradiction because rejecting the null proves nothing, except perhaps that the null is unlikely to be the source of the observed data. It doesn't prove that the true difference is 5 inches, or 1 inch, or anything. Because of this, rejecting the null hypothesis is in NO WAY equivalent to accepting an alternative hypothesis. Usually, in the course of an experiment, we observe a result (such as the observed height difference, perhaps it is ~5 inches) that, once we reject, replaces the hypothesized value of 0 under the null. However, we DON'T know anything about the probability that our observed value is "correct", which is why we never say that we have "accepted" an alternative. I actually hesitate to discuss an "alternative" hypothesis because most researchers never state one and it doesn't matter for the purposes of null hypothesis significance testing (NHST). It is just the name given to the conclusion drawn by the researchers after they have rejected their null hypothesis. Philosophically, there is an adage that data can never be used to prove an assertion, only to disprove one. It includes an analogy about a turkey concluding that he is loved by his human family and is proven wrong upon being slaughtered on Thanksgiving. I'll include a link if I can find it. Now, think about this: The concept of rejecting a null hypothesis probably seems very reasonable as long as we are careful not to overinterpret it, and this is how NHST was performed for decades. But consider - what is the probability that the null hypothesis is true in the first place? In other words, how likely is it that the difference between mens' and womens' heights is equal to zero? I propose that the probability is exactly zero, and if you disagree then I will find a ruler small enough to prove me correct. The difference can never be equal to exactly zero (even though this is the "straw man" that our experiment refutes), so we are effectively testing against a hypothesis that can never be true. Rejecting a hypothesis we already know to be false tells us nothing important ("the data are unlikely to have come from this state that cannot be true"). And since every null hypothesis is imaginary, it is suggested that any null hypothesis can be rejected with enough statistical power (read:sample size). Often a "significant" result says more about a study's sample size than it does about the study's findings, even though the language used in papers/media suggests to readers that the findings are more "important" or "likely to be correct". This has, in part, led to a reproducibility crisis in the sciences and, for some, an undermining of subject-matter-experts' trust in the use of applied statistics. Answer from stat_daddy on reddit.com
🌐
National University
resources.nu.edu › statsresources › hypothesis
Null & Alternative Hypotheses - Statistics Resources - LibGuides at National University
October 27, 2025 - Alternative Hypothesis: Ha: There is a positive relationship between height and shoe size. Null Hypothesis: H0: Experience on the job has no impact on the quality of a brick mason’s work.
🌐
Scribbr
scribbr.com › home › null and alternative hypotheses | definitions & examples
Null and Alternative Hypotheses | Definitions & Examples
January 24, 2025 - The table below gives examples of research questions and null hypotheses. There’s always more than one way to answer a research question, but these null hypotheses can help you get started. *Note that some researchers prefer to always write the null hypothesis in terms of “no effect” and “=”. It would be fine to say that daily meditation has no effect on the incidence of depression and p1 = p2. The alternative ...
Discussions

Null hypothesis and Alternative Hypothesis
Hi! So, yours is actually a sophisticated question that masquerades as a simple one, so I'll try to answer this in a way that conveys the concept while perhaps alluding to some of its problems. At its heart, the null hypothesis is a sort of "straw man" that is defined by a researcher at the beginning of an experiment that usually represents a state of affairs that would be expected to occur if the researcher's proposal were false. Note that a null hypothesis is entirely imaginary, and it has nothing to do with the actual state of the world. It is contrived, usually to show that the actual state of the world is inconsistent with the null hypothesis. Suppose a researcher is trying to determine whether the heights of men and women are different. A suitable null hypothesis might be that the difference of the two population averages (height of men and height of women) is equal to zero. Then the researcher would conduct his or her experiment by measuring the heights of many men and women. When it comes time to draw a statistical conclusion, he or she will compute the probability that the observed data (the set of heights) could have come from the null hypothesis (i.e., a world where there is no difference). This probability is called a "p-value". Conceptually, this is similar to a "proof by contradiction," in which we assert that, if the probability is very small that the data could have originated from the null hypothesis, it must not be true. This is what is meant by "rejecting the null hypothesis". It is different from a proof by contradiction because rejecting the null proves nothing, except perhaps that the null is unlikely to be the source of the observed data. It doesn't prove that the true difference is 5 inches, or 1 inch, or anything. Because of this, rejecting the null hypothesis is in NO WAY equivalent to accepting an alternative hypothesis. Usually, in the course of an experiment, we observe a result (such as the observed height difference, perhaps it is ~5 inches) that, once we reject, replaces the hypothesized value of 0 under the null. However, we DON'T know anything about the probability that our observed value is "correct", which is why we never say that we have "accepted" an alternative. I actually hesitate to discuss an "alternative" hypothesis because most researchers never state one and it doesn't matter for the purposes of null hypothesis significance testing (NHST). It is just the name given to the conclusion drawn by the researchers after they have rejected their null hypothesis. Philosophically, there is an adage that data can never be used to prove an assertion, only to disprove one. It includes an analogy about a turkey concluding that he is loved by his human family and is proven wrong upon being slaughtered on Thanksgiving. I'll include a link if I can find it. Now, think about this: The concept of rejecting a null hypothesis probably seems very reasonable as long as we are careful not to overinterpret it, and this is how NHST was performed for decades. But consider - what is the probability that the null hypothesis is true in the first place? In other words, how likely is it that the difference between mens' and womens' heights is equal to zero? I propose that the probability is exactly zero, and if you disagree then I will find a ruler small enough to prove me correct. The difference can never be equal to exactly zero (even though this is the "straw man" that our experiment refutes), so we are effectively testing against a hypothesis that can never be true. Rejecting a hypothesis we already know to be false tells us nothing important ("the data are unlikely to have come from this state that cannot be true"). And since every null hypothesis is imaginary, it is suggested that any null hypothesis can be rejected with enough statistical power (read:sample size). Often a "significant" result says more about a study's sample size than it does about the study's findings, even though the language used in papers/media suggests to readers that the findings are more "important" or "likely to be correct". This has, in part, led to a reproducibility crisis in the sciences and, for some, an undermining of subject-matter-experts' trust in the use of applied statistics. More on reddit.com
🌐 r/AskStatistics
18
18
January 5, 2021
Null vs Alternative hypothesis in practice - Cross Validated
From the beginning of the most ... hypothesis is the "first step" of any good experiment and subsequent analysis. Now that I have been venturing into more complex courses and topics, I see this exercise still being performed. I have always perceived the proposal of the null v. alternative as a teachable example of how to ... More on stats.stackexchange.com
🌐 stats.stackexchange.com
June 7, 2023
Null vs. Alternative Hypothesis

A null hypothesis represents the status quo. Ie a manufacturer claims that their baseball weighs 50grams. So our null is that the mean weight is 50grams. An alternative is a departure from that null. I think the manufacturer is lying. So the alternative is that the mean weight is not 50 grams. I'm not claiming to know what the mean weight actually is, only that it's significantly different from 50 grams.

More on reddit.com
🌐 r/AskStatistics
7
2
January 4, 2018
Question about choosing null vs alternative hypotheses in hypothesis testing
Mostly yes. It depends a bit on the discipline (field) and purpose, but you usually pick as H0 the thing you want to reject (demonstrate implausible). So for a drug, H0 is that it doesn’t work. Your examples are less clear cut, but they also show that it’s sometimes tricky to formulate the hypotheses and the test. Sometimes there is no “correct” formulation. Just varying levels of appropriateness. And the whole practice on null-based testing has been heavily criticized for decades (again, depends on the problem). More on reddit.com
🌐 r/AskStatistics
16
5
February 6, 2023
People also ask

What’s the difference between a research hypothesis and a statistical hypothesis?
A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (“x affects y because …”). · A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study, the statistical hypotheses correspond logically to the research hypothesis.
🌐
scribbr.com
scribbr.com › home › null and alternative hypotheses | definitions & examples
Null and Alternative Hypotheses | Definitions & Examples
What are null and alternative hypotheses?
Null and alternative hypotheses are used in statistical hypothesis testing. The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.
🌐
scribbr.com
scribbr.com › home › null and alternative hypotheses | definitions & examples
Null and Alternative Hypotheses | Definitions & Examples
What is hypothesis testing?
Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses, by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.
🌐
scribbr.com
scribbr.com › home › null and alternative hypotheses | definitions & examples
Null and Alternative Hypotheses | Definitions & Examples
🌐
Lumen Learning
courses.lumenlearning.com › introstats1 › chapter › null-and-alternative-hypotheses
Null and Alternative Hypotheses | Introduction to Statistics
This practice is acceptable because we only make the decision to reject or not reject the null hypothesis. H0: No more than 30% of the registered voters in Santa Clara County voted in the primary election. p ≤ 30 · Ha: More than 30% of the registered voters in Santa Clara County voted in the primary election. p > 30 · A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.
🌐
GeeksforGeeks
geeksforgeeks.org › software testing › understanding-hypothesis-testing
Hypothesis Testing - GeeksforGeeks
For example, if a company says ... to look at past visitor data and see if this claim is true or if the actual number is different. Null Hypothesis (H₀): The starting assumption. For example, "The average visits are 50." Alternative Hypothesis ...
Published   July 28, 2025
🌐
Pressbooks
pressbooks-dev.oer.hawaii.edu › introductorystatistics › chapter › null-and-alternative-hypotheses
Null and Alternative Hypotheses – Introductory Statistics
July 19, 2013 - H0: The null hypothesis: It is a statement about the population that either is believed to be true or is used to put forth an argument unless it can be shown to be incorrect beyond a reasonable doubt. Ha: The alternative hypothesis: It is a claim about the population that is contradictory to H0 and what we conclude when we reject H0.
🌐
Reddit
reddit.com › r/askstatistics › null hypothesis and alternative hypothesis
r/AskStatistics on Reddit: Null hypothesis and Alternative Hypothesis
January 5, 2021 -

Hey! Can someone explain to me in simple terms the definition of null hypothesis? If u can use an example it would be great! Also if we reject the null hypothesis does it mean that the alternative hypothesis is true?

Top answer
1 of 4
30
Hi! So, yours is actually a sophisticated question that masquerades as a simple one, so I'll try to answer this in a way that conveys the concept while perhaps alluding to some of its problems. At its heart, the null hypothesis is a sort of "straw man" that is defined by a researcher at the beginning of an experiment that usually represents a state of affairs that would be expected to occur if the researcher's proposal were false. Note that a null hypothesis is entirely imaginary, and it has nothing to do with the actual state of the world. It is contrived, usually to show that the actual state of the world is inconsistent with the null hypothesis. Suppose a researcher is trying to determine whether the heights of men and women are different. A suitable null hypothesis might be that the difference of the two population averages (height of men and height of women) is equal to zero. Then the researcher would conduct his or her experiment by measuring the heights of many men and women. When it comes time to draw a statistical conclusion, he or she will compute the probability that the observed data (the set of heights) could have come from the null hypothesis (i.e., a world where there is no difference). This probability is called a "p-value". Conceptually, this is similar to a "proof by contradiction," in which we assert that, if the probability is very small that the data could have originated from the null hypothesis, it must not be true. This is what is meant by "rejecting the null hypothesis". It is different from a proof by contradiction because rejecting the null proves nothing, except perhaps that the null is unlikely to be the source of the observed data. It doesn't prove that the true difference is 5 inches, or 1 inch, or anything. Because of this, rejecting the null hypothesis is in NO WAY equivalent to accepting an alternative hypothesis. Usually, in the course of an experiment, we observe a result (such as the observed height difference, perhaps it is ~5 inches) that, once we reject, replaces the hypothesized value of 0 under the null. However, we DON'T know anything about the probability that our observed value is "correct", which is why we never say that we have "accepted" an alternative. I actually hesitate to discuss an "alternative" hypothesis because most researchers never state one and it doesn't matter for the purposes of null hypothesis significance testing (NHST). It is just the name given to the conclusion drawn by the researchers after they have rejected their null hypothesis. Philosophically, there is an adage that data can never be used to prove an assertion, only to disprove one. It includes an analogy about a turkey concluding that he is loved by his human family and is proven wrong upon being slaughtered on Thanksgiving. I'll include a link if I can find it. Now, think about this: The concept of rejecting a null hypothesis probably seems very reasonable as long as we are careful not to overinterpret it, and this is how NHST was performed for decades. But consider - what is the probability that the null hypothesis is true in the first place? In other words, how likely is it that the difference between mens' and womens' heights is equal to zero? I propose that the probability is exactly zero, and if you disagree then I will find a ruler small enough to prove me correct. The difference can never be equal to exactly zero (even though this is the "straw man" that our experiment refutes), so we are effectively testing against a hypothesis that can never be true. Rejecting a hypothesis we already know to be false tells us nothing important ("the data are unlikely to have come from this state that cannot be true"). And since every null hypothesis is imaginary, it is suggested that any null hypothesis can be rejected with enough statistical power (read:sample size). Often a "significant" result says more about a study's sample size than it does about the study's findings, even though the language used in papers/media suggests to readers that the findings are more "important" or "likely to be correct". This has, in part, led to a reproducibility crisis in the sciences and, for some, an undermining of subject-matter-experts' trust in the use of applied statistics.
2 of 4
6
The null hypothesis (Ho) signifies no change. The alternative hypothesis (Ha) signifies a change. If we reject the null, we have evidence for the alternative hypothesis. This doesn’t mean that it’s true just that within this study, we have evidence to support the alternative hypothesis. If we fail to reject the null (we don’t use the word accept) then there is not enough evidence supporting the alternative hypothesis. Example: I’m wondering if smoking impacts lung function using a spirometry test that measures forced exploratory volume per second (FEV1). Ho: There is no difference in FEV1 between smokers vs non smokers Ha: There is a difference in FEV1 between smokers and non smokers. Rejecting or failing to reject the null aka Ho will involve more steps than just analyzing the mean FEV1 between the two groups, so let’s stop here before we get into more hypothesis testing.
Find elsewhere
Top answer
1 of 3
12

Your question starts out as if the statistical null and alternative hypotheses are what you are interested in, but the penultimate sentence makes me think that you might be more interested in the difference between scientific and statistical hypotheses.

Statistical hypotheses can only be those that are expressible within a statistical model. They typically concern values of parameters within the statistical model. Scientific hypotheses almost invariably concern the real world, and they often do not directly translate into the much more limited universe of the chosen statistical model. Few introductory stats books spend any real time considering what constitutes a statistical model (it can be very complicated) and the trivial examples used have scientific hypotheses so simple that the distinction between model and real-world hypotheses is blurry.

I have written an extensive account of hypothesis and significance testing that includes several sections dealing with the distinction between scientific and statistical hypotheses, as well as the dangers that might come from assuming a match between the statistical model and the real-world scientific concerns: A Reckless Guide to P-values

So, to answer your explicit questions:

• No, statisticians do not always use null and alternative hypotheses. Many statistical methods do not require them.

• It is common practice in some disciplines (and maybe some schools of statistics) to specify the null and alternative hypothesis when a hypothesis test is being used. However, you should note that a hypotheses test requires an explicit alternative for the planning stage (e.g. for sample size determination) but once the data are in hand that alternative is no longer relevant. Many times the post-data alternative can be no more than 'not the null'.

• I'm not sure of the mental heuristic thing, but it does seem possible to me that the beginner courses omit so much detail in the service of simplicity that the word 'hypothesis' loses its already vague meaning.

2 of 3
5

You wrote

the declaration of a null and alternative hypothesis is the "first step" of any good experiment and subsequent analysis.

Well, you did put quotes around first step, but I'd say the first step in an experiment is figuring out what you want to figure out.

As to "subsequent analysis", it might even be that the subsequent analysis does not involve testing a hypothesis! Maybe you just want to estimate a parameter. Personally, I think tests are overused.

Often, you know in advance that the null is false and you just want to see what is actually going on.

🌐
Quora
quora.com › What-are-some-examples-of-null-hypothesis-and-its-corresponding-alternative-hypothesis
What are some examples of null hypothesis and its corresponding alternative hypothesis? - Quora
Answer (1 of 3): These are statistical terms and are used only for statistical analysis. In statistics there is the population and there are the samples. The population is an idealized group of every example in every place through all of time. Say we are going to compare healing times of intrame...
🌐
Slideshare
slideshare.net › home › data & analytics › null and alternative hypothesis.pptx
NULL AND ALTERNATIVE HYPOTHESIS.pptx
It is represented by H0 and can be rejected but not accepted. The alternative hypothesis proposes an alternative theory to the null hypothesis by stating a relationship or difference does exist between variables. It is represented by H1 or Ha. If the null hypothesis is rejected based on a low p-value, the alternative hypothesis is supported, meaning the results are statistically significant. Examples of null and alternative hypotheses are provided.
🌐
Statistics LibreTexts
stats.libretexts.org › campus bookshelves › los angeles city college › introductory statistics › 9: hypothesis testing with one sample
9.2: Null and Alternative Hypotheses - Statistics LibreTexts
July 29, 2023 - After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are "reject \(H_0\)" if the sample information favors the alternative hypothesis or "do not reject \(H_0\)" or "decline to reject \(H_0\)" if the sample information is insufficient to reject the null hypothesis.
🌐
Formpl
formpl.us › blog › alternative-null-hypothesis
Alternative vs Null Hypothesis: Pros, Cons, Uses & Examples
November 22, 2021 - If you develop a null hypothesis, you make an informed guess on whether a thing is true or whether there is a relationship between that thing and another variable. An alternate hypothesis will always take an opposite stand against a null hypothesis. So if according to a null hypothesis something is correct to an alternate hypothesis that same thing will be incorrect. For example, let’s assume that you develop a null hypothesis that states “I”m going to be $500 richer” the alternate hypothesis will be “I’m going to get $500 or be richer”
🌐
Outlier
articles.outlier.org › null-vs-alternative-hypothesis
Null vs. Alternative Hypothesis [Overview] | Outlier
April 28, 2023 - One hypothesis is that the proportion of vegetarians is 5%. The other hypothesis is that the proportion of vegetarians is greater than 5%. In statistics, we would call the first hypothesis the null hypothesis, and the second hypothesis the ...
🌐
Simply Psychology
simplypsychology.org › research methodology › what is the null hypothesis & when do you reject the null hypothesis
What Is The Null Hypothesis & When To Reject It
July 31, 2023 - The observed value is statistically significant (p ≤ 0.05), so the null hypothesis (N0) is rejected, and the alternative hypothesis (Ha) is accepted.
🌐
Biology Online
biologyonline.com › home › null hypothesis
Null hypothesis - Definition and Examples - Biology Online Dictionary
June 16, 2022 - In the above example of plants, the null hypothesis is: There are no statistical relationships among the forms of water that are given to plants for growth and nourishment. Usually, an investigator tries to prove the null hypothesis wrong and tries to explain a relation and association between the two variables. An opposite and reverse of the null hypothesis are known as the alternate hypothesis.
🌐
PubMed Central
pmc.ncbi.nlm.nih.gov › articles › PMC6785820
An Introduction to Statistics: Understanding Hypothesis Testing and Statistical Errors - PMC
For superiority studies, the alternate ... example, in the ABLE study, we start by stating the null hypothesis—there is no difference in mortality between groups receiving fresh RBCs and standard-issue RBCs....
🌐
Tallahassee State College
tsc.fl.edu › media › divisions › learning-commons › resources-by-subject › math › statistics › The-Null-and-the-Alternative-Hypotheses.pdf pdf
The Null and the Alternative Hypotheses
more than or less than 50%. The Null and Alternative Hypotheses looks like: H0: p = 0.5 (This is ... They want to test what proportion of the parts do not meet the specifications. Since they claim · that the proportion is less than 2%, the symbol for the Alternative Hypothesis will be <. As is the
🌐
Pressbooks
ecampusontario.pressbooks.pub › introstats › chapter › 8-2-null-and-alternative-hypotheses
8.2 Null and Alternative Hypotheses – Introduction to Statistics
September 1, 2022 - On a state driver's test, about 40% pass the test on the first try. We want to test if more than 40% pass on the first try. State the null and alternative hypotheses. ... In a hypothesis test, sample data is evaluated in order to arrive at a decision about some type of claim.
🌐
ThoughtCo
thoughtco.com › null-hypothesis-vs-alternative-hypothesis-3126413
Differences Between The Null and Alternative Hypothesis
June 24, 2019 - If the null hypothesis is not rejected, then we do not accept the alternative hypothesis. Going back to the above example of mean human body temperature, the alternative hypothesis is “The average adult human body temperature is not 98.6 degrees Fahrenheit.” · If we are studying a new treatment, then the alternative hypothesis is that our treatment does, in fact, change our subjects in a meaningful and ...
🌐
ABPI Schools
abpischools.org.uk › topics › statistics › the-null-hypothesis-and-the-p-value
The null hypothesis and the p-value
For example, if your null hypothesis read ‘There is no difference between the mean weights of two different species of birds’, the alternative hypothesis may read ‘One species of bird has a different mean weight than another species of bird’.
🌐
Applied Mathematics
colorado.edu › amath › sites › default › files › attached-files › lesson9_hyptests.pdf pdf
9 Hypothesis Tests (Ch 9.1-­9.3, 9.5-­9.9)
Null hypothesis: H0: µ = µ0 · Test statistic value: Alternative Hypothesis · Rejection Region for a Level α · Test · 24 · CI vs. Hypotheses · Rejection regions have a lot in common with confidence intervals. Source: shex.org · 25 · CI vs. Hypotheses · Example: The Brinell scale is a measure of how hard a ·