Langchain
docs.langchain.com โบ oss โบ python โบ langchain โบ overview
LangChain overview - Docs by LangChain
# pip install -qU langchain "langchain[anthropic]" from langchain.agents import create_agent def get_weather(city: str) -> str: """Get weather for a given city.""" return f"It's always sunny in {city}!" agent = create_agent( model="claude-sonnet-4-5-20250929", tools=[get_weather], system_prompt="You are a helpful assistant", ) # Run the agent agent.invoke( {"messages": [{"role": "user", "content": "what is the weather in sf"}]} ) See the Installation instructions and Quickstart guide to get started building your own agents and applications with LangChain.
LLama2 prompt template
I have implemented the llama 2 llm using langchain and it need to customise the prompt template, you can't just use the key of {history} for conversation. Currently langchain api are not fully supported the llm other than openai.
More on reddit.comWhy have Prompt Templates?
Itโs probably to keep passing original context to not hallucinate much? More on reddit.com
Prompt templates in LangChain
Have you covered placeholder message? They are a little bit weird and I have only seen them in chats to inject the history and also something with tools. More on reddit.com
Value of prompt templates
One reason is that they have validation built in. I had the same question and explored their source code. These are basically wrappers o ln top of formatter class from standard lib and pydantic data models. The validation part is the key value add. More on reddit.com
Videos
LangChain: Prompt Templates, Parsers and Chaining for ...
29:56
Prompt Templating and Techniques in LangChain - YouTube
18:14
How to Use Chat Models & Prompt Templates | LangChain Tutorial ...
LangChain Prompt Templates with Ollama Generative AI ...
06:51
LangChain Tutorial (JS) #2: LLM Chains and Prompt Templates - YouTube
17:50
LangChain Tutorial | Creating Effective Prompt Templates with ...
Mirascope
mirascope.com โบ blog โบ langchain-prompt-template
A Guide to Prompt Templates in LangChain | Mirascope
June 30, 2025 - This is handy because you donโt need to manually construct message objects โ the template handles it for you. When youโre working with chat-based models, you often want to include conversation history (or some sequence of messages). MessagesPlaceholder acts as a stand-in for a dynamic list of messages youโll provide at runtime. Imagine weโre building a career coach bot that remembers previous questions and answers: from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain_core.messages import HumanMessage, AIMessage chat_prompt = ChatPromptTemplate.fro
Codecademy
codecademy.com โบ article โบ getting-started-with-lang-chain-prompt-templates
Getting Started with LangChain Prompt Templates | Codecademy
Prompt templates provide us with a reusable way to generate prompts using a base prompt structure. This helps standardize the structure and content of prompts. In LangChain, we can use the PromptTemplate() function and the from_template() function ...
Langchain
reference.langchain.com โบ python โบ langchain_core โบ prompts
Prompts | LangChain Reference
Use to create flexible templated prompts for chat models. from langchain_core.prompts import ChatPromptTemplate template = ChatPromptTemplate( [ ("system", "You are a helpful AI bot.
GitHub
github.com โบ pinecone-io โบ examples โบ blob โบ master โบ learn โบ generation โบ langchain โบ handbook โบ 01-langchain-prompt-templates.ipynb
examples/learn/generation/langchain/handbook/01-langchain-prompt-templates.ipynb at master ยท pinecone-io/examples
"Another useful feature offered by LangChain is the `FewShotPromptTemplate` object. This is ideal for what we'd call *few-shot learning* using our prompts.\n",
Author ย pinecone-io
LangChain
python.langchain.com โบ api_reference โบ core โบ prompts โบ langchain_core.prompts.prompt.PromptTemplate.html
PromptTemplate โ ๐ฆ๐ LangChain documentation
Exceptions: Common LangChain exception types. Language models: Base interfaces for language models. Serialization: Components for serialization and deserialization. Output parsers: Parsing model outputs. Prompts: Prompt templates and related utilities.
LangChain
api.python.langchain.com โบ en โบ latest โบ prompts โบ langchain_core.prompts.prompt.PromptTemplate.html
langchain_core.prompts.prompt.PromptTemplate โ ๐ฆ๐ LangChain 0.2.17
It accepts a set of parameters from the user that can be used to generate a prompt for a language model. The template can be formatted using either f-strings (default) or jinja2 syntax. ... Prefer using template_format=โf-stringโ instead of template_format=โjinja2โ, or make sure to ...
LangChain
python.langchain.com โบ api_reference โบ core โบ prompts.html
prompts โ ๐ฆ๐ LangChain documentation
Exceptions: Common LangChain exception types. Language models: Base interfaces for language models. Serialization: Components for serialization and deserialization. Output parsers: Parsing model outputs. Prompts: Prompt templates and related utilities.
LangSmith
smith.langchain.com โบ hub โบ langchain-ai โบ react-agent-template
langchain-ai/react-agent-template - LangSmith
We cannot provide a description for this page right now