๐ŸŒ
Langchain
docs.langchain.com โ€บ oss โ€บ python โ€บ langchain โ€บ overview
LangChain overview - Docs by LangChain
# pip install -qU langchain "langchain[anthropic]" from langchain.agents import create_agent def get_weather(city: str) -> str: """Get weather for a given city.""" return f"It's always sunny in {city}!" agent = create_agent( model="claude-sonnet-4-5-20250929", tools=[get_weather], system_prompt="You are a helpful assistant", ) # Run the agent agent.invoke( {"messages": [{"role": "user", "content": "what is the weather in sf"}]} ) See the Installation instructions and Quickstart guide to get started building your own agents and applications with LangChain.
๐ŸŒ
Medium
medium.com โ€บ @ssmaameri โ€บ prompt-templates-in-langchain-efb4da260bd3
Prompt Templates in LangChain. Do you ever get confused by Promptโ€ฆ | by Sami Maameri | Medium
April 14, 2024 - mkdir prompt-templates cd prompt-templates python3 -m venv .venv touch prompt-templates.py pip install python-dotenv langchain langchain-openai
Discussions

LLama2 prompt template

I have implemented the llama 2 llm using langchain and it need to customise the prompt template, you can't just use the key of {history} for conversation. Currently langchain api are not fully supported the llm other than openai.

More on reddit.com
๐ŸŒ r/LangChain
2
5
March 24, 2022
Why have Prompt Templates?
Itโ€™s probably to keep passing original context to not hallucinate much? More on reddit.com
๐ŸŒ r/LangChain
1
2
April 16, 2023
Prompt templates in LangChain
Have you covered placeholder message? They are a little bit weird and I have only seen them in chats to inject the history and also something with tools. More on reddit.com
๐ŸŒ r/LangChain
4
7
July 6, 2023
Value of prompt templates
One reason is that they have validation built in. I had the same question and explored their source code. These are basically wrappers o ln top of formatter class from standard lib and pydantic data models. The validation part is the key value add. More on reddit.com
๐ŸŒ r/LangChain
9
5
June 25, 2023
๐ŸŒ
Mirascope
mirascope.com โ€บ blog โ€บ langchain-prompt-template
A Guide to Prompt Templates in LangChain | Mirascope
June 30, 2025 - This is handy because you donโ€™t need to manually construct message objects โ€” the template handles it for you. When youโ€™re working with chat-based models, you often want to include conversation history (or some sequence of messages). MessagesPlaceholder acts as a stand-in for a dynamic list of messages youโ€™ll provide at runtime. Imagine weโ€™re building a career coach bot that remembers previous questions and answers: from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain_core.messages import HumanMessage, AIMessage chat_prompt = ChatPromptTemplate.fro
๐ŸŒ
Codecademy
codecademy.com โ€บ article โ€บ getting-started-with-lang-chain-prompt-templates
Getting Started with LangChain Prompt Templates | Codecademy
Prompt templates provide us with a reusable way to generate prompts using a base prompt structure. This helps standardize the structure and content of prompts. In LangChain, we can use the PromptTemplate() function and the from_template() function ...
๐ŸŒ
Pinecone
pinecone.io โ€บ learn โ€บ series โ€บ langchain โ€บ langchain-prompt-templates
Prompt Engineering and LLMs with Langchain | Pinecone
The prompt template classes in Langchain are built to make constructing prompts with dynamic inputs easier. Of these classes, the simplest is the PromptTemplate.
๐ŸŒ
Comet
comet.com โ€บ home โ€บ llmops โ€บ introduction to prompt templates in langchain
Introduction to Prompt Templates in LangChain - Comet
April 24, 2025 - These pre-defined recipes can contain instructions, context, few-shot examples, and questions that are appropriate for a particular task. LangChain offers a set of tools for creating and working with prompt templates.
๐ŸŒ
Langchain
reference.langchain.com โ€บ python โ€บ langchain_core โ€บ prompts
Prompts | LangChain Reference
Use to create flexible templated prompts for chat models. from langchain_core.prompts import ChatPromptTemplate template = ChatPromptTemplate( [ ("system", "You are a helpful AI bot.
Find elsewhere
๐ŸŒ
LangChain
python.langchain.com โ€บ api_reference โ€บ core โ€บ prompts โ€บ langchain_core.prompts.prompt.PromptTemplate.html
PromptTemplate โ€” ๐Ÿฆœ๐Ÿ”— LangChain documentation
Exceptions: Common LangChain exception types. Language models: Base interfaces for language models. Serialization: Components for serialization and deserialization. Output parsers: Parsing model outputs. Prompts: Prompt templates and related utilities.
๐ŸŒ
LangChain
api.python.langchain.com โ€บ en โ€บ latest โ€บ prompts โ€บ langchain_core.prompts.prompt.PromptTemplate.html
langchain_core.prompts.prompt.PromptTemplate โ€” ๐Ÿฆœ๐Ÿ”— LangChain 0.2.17
It accepts a set of parameters from the user that can be used to generate a prompt for a language model. The template can be formatted using either f-strings (default) or jinja2 syntax. ... Prefer using template_format=โ€f-stringโ€ instead of template_format=โ€jinja2โ€, or make sure to ...
๐ŸŒ
LangChain
python.langchain.com โ€บ api_reference โ€บ core โ€บ prompts.html
prompts โ€” ๐Ÿฆœ๐Ÿ”— LangChain documentation
Exceptions: Common LangChain exception types. Language models: Base interfaces for language models. Serialization: Components for serialization and deserialization. Output parsers: Parsing model outputs. Prompts: Prompt templates and related utilities.