a value indicating that a pointer does not refer to a valid object
Videos
Any pointer type with the value 0 is called a null pointer. Here is the explanation from the C standard ยง6.3.2.3:
- An integer constant expression with the value 0, or such an expression cast to type void *, is called a null pointer constant. If a null pointer constant is converted to a pointer type, the resulting pointer, called a null pointer, is guaranteed to compare unequal to a pointer to any object or function
Null pointer is a pointer that points to memory address 0. Most system reserve this address so that no object will ever reside in there. This reservation allows to use it as blank address.
If you try to read or write from null pointer you will get runtime error which is sometimes called segmentation fault, or null pointer exception.
In your example the null pointer is used to indicate end of the list. So this condition (struct entry *) 0, checks if you have reached end of the list and iteration should stop
Usually it considered better form to use constant NULL instead of literal value 0. This makes code more readable, and also covers very rare case when NULL pointer is not a 0
The cast (struct entry *) is just to avoid compiler warning, because literal 0 is of type integer not a pointer. That's another reason to use constant NULL, because it is usually defined as (void*) 0 which compares nicely to any pointer value without a warning from compiler
In C, NULL is a macro that expands to a null pointer constant.
7.19p3
The macros are
NULL which expands to an implementation-defined null pointer constant; ...
A null pointer constant is an integer constant expression with the value 0 (
e.g., 0, 1-1, 42*0LL, etc.) or such an expression cast to (void*).
6.3.2.3p3
An integer constant expression with the value 0, or such an expression cast to type void *, is called a null pointer constant.66) If a null pointer constant is converted to a pointer type, the resulting pointer, called a null pointer, is guaranteed to compare unequal to a pointer to any object or function.
Most common C implementations define NULL to be 0, 0L, or ((void*)0).
So you are correct. NULL need not be a pointer.
(IIRC, C++ doesn't even allow the (void*) cast in NULL, meaning NULL in C++ always has integer type. Because of that and because void* pointers
do not compare with regular pointers so readily in C++, C++>=11 now has a special nullptr keyword.)
NULL itself is not a pointer, it is a macro that can be used to initialize a pointer to the null pointer value of its type. When compared to a pointer, it compares equal if the pointer is a null pointer and unequal if the pointer is a valid pointer to an object of its type.
There is no semantic difference between char *p = 0; and char *p = NULL; but the latter is more explicit and using NULL instead of 0 is more informative in circumstances where the other operand is not obviously a pointer or if comparing to an integer looks like a type mismatch:
FILE *fp = fopen("myfile", "r");
if (fp == NULL) {
/* report the error */
}
Similarly, there is no semantical difference in C between '\0' and 0, they both are int constants. The first is the null byte, the second the null value. Using 0, '\0' and NULL wisely may seem futile but makes code more readable by other programmers and oneself too.
The confusion may come from misspelling or mishearing the null pointer as the NULL pointer. The C Standard was carefully proof read to only use null pointer and refer to NULL only as the macro NULL.
Note however that one the accepted definitions of NULL, #define NULL ((void*)0) makes NULL a null pointer to void.
If we want to "Nullify" something why dont we create a pointer in a controlled way that points to value 0?
Actually, you can use a literal 0 anyplace you would use NULL.
Section 6.3.2.3p3 of the C standard states:
An integer constant expression with the value 0, or such an expression cast to type
void *, is called a null pointer constant. If a null pointer constant is converted to a pointer type, the resulting pointer, called a null pointer, is guaranteed to compare unequal to a pointer to any object or function.
And section 7.19p3 states:
The macros are:
NULLwhich expands to an implementation-defined null pointer constant
So 0 qualifies as a null pointer constant, as does (void *)0 and NULL. The use of NULL is preferred however as it makes it more evident to the reader that a null pointer is being used and not the integer value 0.
NULL is used to make it clear it is a pointer type.
Ideally, the C implementation would define NULL as ((void *) 0) or something equivalent, and programmers would always use NULL when they want a null pointer constant.
If this is done, then, when a programmer has, for example, an int *x and accidentally writes *x = NULL;, then the compiler can recognize that a mistake has been made, because the left side of = has type int, and the right side has type void *, and this is not a proper combination for assignment.
In contrast, if the programmer accidentally writes *x = 0; instead of x = 0;, then the compiler cannot recognize this mistake, because the left side has type int, and the right side has type int, and that is a valid combination.
Thus, when NULL is defined well and is used, mistakes are detected earlier.
In particular answer to your question โIs there a context in which just plain literal 0 would not work exactly the same?โ:
- In correct code,
NULLand0may be used interchangeably as null pointer constants. 0will function as an integer (non-pointer) constant, butNULLmight not, depending on how the C implementation defines it.- For the purpose of detecting errors,
NULLand0do not work exactly the same; usingNULLwith a good definition serves to help detect some mistakes that using0does not.
The C standard allows 0 to be used for null pointer constants for historic reasons. However, this is not beneficial except for allowing previously written code to compile in compilers using current C standards. New code should avoid using 0 as a null pointer constant.