Hi! So, yours is actually a sophisticated question that masquerades as a simple one, so I'll try to answer this in a way that conveys the concept while perhaps alluding to some of its problems. At its heart, the null hypothesis is a sort of "straw man" that is defined by a researcher at the beginning of an experiment that usually represents a state of affairs that would be expected to occur if the researcher's proposal were false. Note that a null hypothesis is entirely imaginary, and it has nothing to do with the actual state of the world. It is contrived, usually to show that the actual state of the world is inconsistent with the null hypothesis. Suppose a researcher is trying to determine whether the heights of men and women are different. A suitable null hypothesis might be that the difference of the two population averages (height of men and height of women) is equal to zero. Then the researcher would conduct his or her experiment by measuring the heights of many men and women. When it comes time to draw a statistical conclusion, he or she will compute the probability that the observed data (the set of heights) could have come from the null hypothesis (i.e., a world where there is no difference). This probability is called a "p-value". Conceptually, this is similar to a "proof by contradiction," in which we assert that, if the probability is very small that the data could have originated from the null hypothesis, it must not be true. This is what is meant by "rejecting the null hypothesis". It is different from a proof by contradiction because rejecting the null proves nothing, except perhaps that the null is unlikely to be the source of the observed data. It doesn't prove that the true difference is 5 inches, or 1 inch, or anything. Because of this, rejecting the null hypothesis is in NO WAY equivalent to accepting an alternative hypothesis. Usually, in the course of an experiment, we observe a result (such as the observed height difference, perhaps it is ~5 inches) that, once we reject, replaces the hypothesized value of 0 under the null. However, we DON'T know anything about the probability that our observed value is "correct", which is why we never say that we have "accepted" an alternative. I actually hesitate to discuss an "alternative" hypothesis because most researchers never state one and it doesn't matter for the purposes of null hypothesis significance testing (NHST). It is just the name given to the conclusion drawn by the researchers after they have rejected their null hypothesis. Philosophically, there is an adage that data can never be used to prove an assertion, only to disprove one. It includes an analogy about a turkey concluding that he is loved by his human family and is proven wrong upon being slaughtered on Thanksgiving. I'll include a link if I can find it. Now, think about this: The concept of rejecting a null hypothesis probably seems very reasonable as long as we are careful not to overinterpret it, and this is how NHST was performed for decades. But consider - what is the probability that the null hypothesis is true in the first place? In other words, how likely is it that the difference between mens' and womens' heights is equal to zero? I propose that the probability is exactly zero, and if you disagree then I will find a ruler small enough to prove me correct. The difference can never be equal to exactly zero (even though this is the "straw man" that our experiment refutes), so we are effectively testing against a hypothesis that can never be true. Rejecting a hypothesis we already know to be false tells us nothing important ("the data are unlikely to have come from this state that cannot be true"). And since every null hypothesis is imaginary, it is suggested that any null hypothesis can be rejected with enough statistical power (read:sample size). Often a "significant" result says more about a study's sample size than it does about the study's findings, even though the language used in papers/media suggests to readers that the findings are more "important" or "likely to be correct". This has, in part, led to a reproducibility crisis in the sciences and, for some, an undermining of subject-matter-experts' trust in the use of applied statistics. Answer from stat_daddy on reddit.com
🌐
Scribbr
scribbr.com › home › null and alternative hypotheses | definitions & examples
Null and Alternative Hypotheses | Definitions & Examples
January 24, 2025 - A null hypothesis claims that there is no effect in the population, while an alternative hypothesis claims that there is an effect.
🌐
National University
resources.nu.edu › statsresources › hypothesis
Null & Alternative Hypotheses - Statistics Resources - LibGuides at National University
October 27, 2025 - Null Hypothesis: H0: There is no difference in the salary of factory workers based on gender. Alternative Hypothesis: Ha: Male factory workers have a higher salary than female factory workers. Null Hypothesis: H0: There is no relationship between height and shoe size.
Discussions

Null hypothesis and alternate hypothesis - Cross Validated
Bring the best of human thought and AI automation together at your work. Explore Stack Internal ... A test statistic is a statistic used to measure the plausibility of an alternative hypothesis relative to a null hypothesis. More on stats.stackexchange.com
🌐 stats.stackexchange.com
March 30, 2017
Null vs Alternative hypothesis in practice - Cross Validated
From the beginning of the most introductory statistics course, the declaration of a null and alternative hypothesis is the "first step" of any good experiment and subsequent analysis. Now... More on stats.stackexchange.com
🌐 stats.stackexchange.com
June 7, 2023
Null hypothesis and Alternative Hypothesis
Hi! So, yours is actually a sophisticated question that masquerades as a simple one, so I'll try to answer this in a way that conveys the concept while perhaps alluding to some of its problems. At its heart, the null hypothesis is a sort of "straw man" that is defined by a researcher at the beginning of an experiment that usually represents a state of affairs that would be expected to occur if the researcher's proposal were false. Note that a null hypothesis is entirely imaginary, and it has nothing to do with the actual state of the world. It is contrived, usually to show that the actual state of the world is inconsistent with the null hypothesis. Suppose a researcher is trying to determine whether the heights of men and women are different. A suitable null hypothesis might be that the difference of the two population averages (height of men and height of women) is equal to zero. Then the researcher would conduct his or her experiment by measuring the heights of many men and women. When it comes time to draw a statistical conclusion, he or she will compute the probability that the observed data (the set of heights) could have come from the null hypothesis (i.e., a world where there is no difference). This probability is called a "p-value". Conceptually, this is similar to a "proof by contradiction," in which we assert that, if the probability is very small that the data could have originated from the null hypothesis, it must not be true. This is what is meant by "rejecting the null hypothesis". It is different from a proof by contradiction because rejecting the null proves nothing, except perhaps that the null is unlikely to be the source of the observed data. It doesn't prove that the true difference is 5 inches, or 1 inch, or anything. Because of this, rejecting the null hypothesis is in NO WAY equivalent to accepting an alternative hypothesis. Usually, in the course of an experiment, we observe a result (such as the observed height difference, perhaps it is ~5 inches) that, once we reject, replaces the hypothesized value of 0 under the null. However, we DON'T know anything about the probability that our observed value is "correct", which is why we never say that we have "accepted" an alternative. I actually hesitate to discuss an "alternative" hypothesis because most researchers never state one and it doesn't matter for the purposes of null hypothesis significance testing (NHST). It is just the name given to the conclusion drawn by the researchers after they have rejected their null hypothesis. Philosophically, there is an adage that data can never be used to prove an assertion, only to disprove one. It includes an analogy about a turkey concluding that he is loved by his human family and is proven wrong upon being slaughtered on Thanksgiving. I'll include a link if I can find it. Now, think about this: The concept of rejecting a null hypothesis probably seems very reasonable as long as we are careful not to overinterpret it, and this is how NHST was performed for decades. But consider - what is the probability that the null hypothesis is true in the first place? In other words, how likely is it that the difference between mens' and womens' heights is equal to zero? I propose that the probability is exactly zero, and if you disagree then I will find a ruler small enough to prove me correct. The difference can never be equal to exactly zero (even though this is the "straw man" that our experiment refutes), so we are effectively testing against a hypothesis that can never be true. Rejecting a hypothesis we already know to be false tells us nothing important ("the data are unlikely to have come from this state that cannot be true"). And since every null hypothesis is imaginary, it is suggested that any null hypothesis can be rejected with enough statistical power (read:sample size). Often a "significant" result says more about a study's sample size than it does about the study's findings, even though the language used in papers/media suggests to readers that the findings are more "important" or "likely to be correct". This has, in part, led to a reproducibility crisis in the sciences and, for some, an undermining of subject-matter-experts' trust in the use of applied statistics. More on reddit.com
🌐 r/AskStatistics
18
18
January 5, 2021
WHY IS THE NULL HYPOTHESIS SO WEIRD
I.e the statistic is the same as the parameter. You should start by rethinking this statement. Statistics are variables, calculated from data. Sample statistics are individual realizations of the variable, but they are basically the parameter +/- uncertainty, so we never actually think the statistic is the same as the parameter. why do we include inequalities in the Null Hypothesis This is generally only the case in 1-sided hypothesis testing, not in general. But it basically boils down to how we choose a (1-alpha)% region of the null distribution to define as our critical region / rejection region. If we choose rejection regions from both tails of the null distribution, we have a two-sided hypothesis test, since we are allowing rejections of the null in both directions. If we pull our entire rejection region from only one tail, we maximize our statistical power in that direction, but then we are incapable of rejecting the null at all in the other direction, so we basically incorporate that direction into the null hypothesis statement itself - it's honestly a bastardization of notation, but it does convey the fact that we are only interested in 1 side of the null distribution. I'm not sure at what level you understand these things, so feel free to ask follow-up questions. 2) What purpose does an alternative hypothesis serve? Once we reject the null, the alternative hypothesis is basically the "alternative" to the null that we accept as "likely being true" (maybe a bit of a simplification, but that's the gist). More on reddit.com
🌐 r/AskStatistics
22
24
February 25, 2022
People also ask

Why is the null hypothesis important?
The importance of the null hypothesis is that it provides an approximate description of the phenomena of the given data. It allows the investigators to directly test the relational statement in a research study.
🌐
byjus.com
byjus.com › maths › null-hypothesis
Null Hypothesis Definition
What is meant by the null hypothesis?
In Statistics, a null hypothesis is a type of hypothesis which explains the population parameter whose purpose is to test the validity of the given experimental data.
🌐
byjus.com
byjus.com › maths › null-hypothesis
Null Hypothesis Definition
What’s the difference between a research hypothesis and a statistical hypothesis?
A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (“x affects y because …”). · A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study, the statistical hypotheses correspond logically to the research hypothesis.
🌐
scribbr.com
scribbr.com › home › null and alternative hypotheses | definitions & examples
Null and Alternative Hypotheses | Definitions & Examples
🌐
Reddit
reddit.com › r/askstatistics › null hypothesis and alternative hypothesis
r/AskStatistics on Reddit: Null hypothesis and Alternative Hypothesis
January 5, 2021 -

Hey! Can someone explain to me in simple terms the definition of null hypothesis? If u can use an example it would be great! Also if we reject the null hypothesis does it mean that the alternative hypothesis is true?

Top answer
1 of 4
30
Hi! So, yours is actually a sophisticated question that masquerades as a simple one, so I'll try to answer this in a way that conveys the concept while perhaps alluding to some of its problems. At its heart, the null hypothesis is a sort of "straw man" that is defined by a researcher at the beginning of an experiment that usually represents a state of affairs that would be expected to occur if the researcher's proposal were false. Note that a null hypothesis is entirely imaginary, and it has nothing to do with the actual state of the world. It is contrived, usually to show that the actual state of the world is inconsistent with the null hypothesis. Suppose a researcher is trying to determine whether the heights of men and women are different. A suitable null hypothesis might be that the difference of the two population averages (height of men and height of women) is equal to zero. Then the researcher would conduct his or her experiment by measuring the heights of many men and women. When it comes time to draw a statistical conclusion, he or she will compute the probability that the observed data (the set of heights) could have come from the null hypothesis (i.e., a world where there is no difference). This probability is called a "p-value". Conceptually, this is similar to a "proof by contradiction," in which we assert that, if the probability is very small that the data could have originated from the null hypothesis, it must not be true. This is what is meant by "rejecting the null hypothesis". It is different from a proof by contradiction because rejecting the null proves nothing, except perhaps that the null is unlikely to be the source of the observed data. It doesn't prove that the true difference is 5 inches, or 1 inch, or anything. Because of this, rejecting the null hypothesis is in NO WAY equivalent to accepting an alternative hypothesis. Usually, in the course of an experiment, we observe a result (such as the observed height difference, perhaps it is ~5 inches) that, once we reject, replaces the hypothesized value of 0 under the null. However, we DON'T know anything about the probability that our observed value is "correct", which is why we never say that we have "accepted" an alternative. I actually hesitate to discuss an "alternative" hypothesis because most researchers never state one and it doesn't matter for the purposes of null hypothesis significance testing (NHST). It is just the name given to the conclusion drawn by the researchers after they have rejected their null hypothesis. Philosophically, there is an adage that data can never be used to prove an assertion, only to disprove one. It includes an analogy about a turkey concluding that he is loved by his human family and is proven wrong upon being slaughtered on Thanksgiving. I'll include a link if I can find it. Now, think about this: The concept of rejecting a null hypothesis probably seems very reasonable as long as we are careful not to overinterpret it, and this is how NHST was performed for decades. But consider - what is the probability that the null hypothesis is true in the first place? In other words, how likely is it that the difference between mens' and womens' heights is equal to zero? I propose that the probability is exactly zero, and if you disagree then I will find a ruler small enough to prove me correct. The difference can never be equal to exactly zero (even though this is the "straw man" that our experiment refutes), so we are effectively testing against a hypothesis that can never be true. Rejecting a hypothesis we already know to be false tells us nothing important ("the data are unlikely to have come from this state that cannot be true"). And since every null hypothesis is imaginary, it is suggested that any null hypothesis can be rejected with enough statistical power (read:sample size). Often a "significant" result says more about a study's sample size than it does about the study's findings, even though the language used in papers/media suggests to readers that the findings are more "important" or "likely to be correct". This has, in part, led to a reproducibility crisis in the sciences and, for some, an undermining of subject-matter-experts' trust in the use of applied statistics.
2 of 4
6
The null hypothesis (Ho) signifies no change. The alternative hypothesis (Ha) signifies a change. If we reject the null, we have evidence for the alternative hypothesis. This doesn’t mean that it’s true just that within this study, we have evidence to support the alternative hypothesis. If we fail to reject the null (we don’t use the word accept) then there is not enough evidence supporting the alternative hypothesis. Example: I’m wondering if smoking impacts lung function using a spirometry test that measures forced exploratory volume per second (FEV1). Ho: There is no difference in FEV1 between smokers vs non smokers Ha: There is a difference in FEV1 between smokers and non smokers. Rejecting or failing to reject the null aka Ho will involve more steps than just analyzing the mean FEV1 between the two groups, so let’s stop here before we get into more hypothesis testing.
🌐
GeeksforGeeks
geeksforgeeks.org › data science › difference-between-null-and-alternate-hypothesis
Difference between Null and Alternate Hypothesis - GeeksforGeeks
May 18, 2022 - Null hypothesis is generally what researchers or scientists try to disprove and if the null hypothesis gets accepted then we have to make changes in our opinion i.e. we have to make changes in our original opinion or statement in order to match null hypothesis. Null hypothesis is represented as H0. If my alternative hypothesis is that 55% of boys in my town are taller than girls then my alternative hypothesis will be that 55% of boys in my town are not taller than girls.
🌐
PubMed Central
pmc.ncbi.nlm.nih.gov › articles › PMC6785820
An Introduction to Statistics: Understanding Hypothesis Testing and Statistical Errors - PMC
In statistical terms, this belief or assumption is known as a hypothesis. Counterintuitively, what the researcher believes in (or is trying to prove) is called the “alternate” hypothesis, and the opposite is called the “null” hypothesis; every study has a null hypothesis and an alternate ...
🌐
Slideshare
slideshare.net › home › data & analytics › null and alternative hypothesis.pptx
NULL AND ALTERNATIVE HYPOTHESIS.pptx
The null hypothesis states that there is no relationship or difference between two variables and is what researchers aim to disprove. It is represented by H0 and can be rejected but not accepted.
Find elsewhere
🌐
Minitab
support.minitab.com › en-us › minitab › help-and-how-to › statistics › basic-statistics › supporting-topics › basics › null-and-alternative-hypotheses
About the null and alternative hypotheses - Minitab
The null and alternative hypotheses are two mutually exclusive statements about a population. A hypothesis test uses sample data to determine whether to reject the null hypothesis. ... The null hypothesis states that a population parameter (such as the mean, the standard deviation, and so on) ...
🌐
Wikipedia
en.wikipedia.org › wiki › Null_hypothesis
Null hypothesis - Wikipedia
3 weeks ago - In neither case is the null hypothesis or its alternative proven; with better or more data, the null may still be rejected. This is analogous to the legal principle of presumption of innocence, in which a suspect or defendant is assumed to be innocent (null is not rejected) until proven guilty (null is rejected) beyond a reasonable doubt (to a statistically significant degree). In the hypothesis testing approach of Jerzy Neyman and Egon Pearson, a null hypothesis is contrasted with an alternative hypothesis, and the two hypotheses are distinguished on the basis of data, with certain error rates.
🌐
BYJUS
byjus.com › maths › null-hypothesis
Null Hypothesis Definition
April 25, 2022 - At the same time, the alternative hypothesis expresses the observations determined by the non-random cause. It is represented by H1 or Ha. The principle followed for null hypothesis testing is, collecting the data and determining the chances of a given set of data during the study on some random sample, assuming that the null hypothesis is true.
🌐
Medium
medium.com › @andersongimino › differences-between-the-null-and-alternative-hypotheses-6b2e794543f6
Differences between the null and alternative hypotheses | by Anderson Gimino | Medium
July 14, 2023 - The null hypothesis typically assumes that there is no effect in the population, and that your observed data occurs by chance. The alternative hypothesis is a statement that contradicts the null hypothesis, and is accepted as true only if there ...
🌐
Lumen Learning
courses.lumenlearning.com › introstats1 › chapter › null-and-alternative-hypotheses
Null and Alternative Hypotheses | Introduction to Statistics
They are called the null hypothesis and the alternative hypothesis. These hypotheses contain opposing viewpoints. H0: The null hypothesis: It is a statement about the population that either is believed to be true or is used to put forth an argument unless it can be shown to be incorrect beyond a reasonable doubt.
🌐
Outlier
articles.outlier.org › null-vs-alternative-hypothesis
Null vs. Alternative Hypothesis [Overview] | Outlier
April 28, 2023 - In medical studies, where scientists ... the alternative hypothesis represents the hypothesis that the treatment does have an effect, while the null hypothesis represents the assumption that the treatment has no effect...
🌐
Tallahassee State College
tsc.fl.edu › media › divisions › learning-commons › resources-by-subject › math › statistics › The-Null-and-the-Alternative-Hypotheses.pdf pdf
The Null and the Alternative Hypotheses
more than or less than 50%. The Null and Alternative Hypotheses looks like: H0: p = 0.5 (This is ... They want to test what proportion of the parts do not meet the specifications. Since they claim · that the proportion is less than 2%, the symbol for the Alternative Hypothesis will be <. As is the
Top answer
1 of 2
1

The purpose of the null is to convert a problem from one of inductive reasoning to one of deductive reasoning. The alternative, and the method that preceded it was the method of inverse probability. That method is now generally called Bayesian statistics.

Imagine that you had three scientific hypotheses, denoted a, b, and c. Imagine that the true model is d, but no one has yet to discover this. The world is still flat, white is still a color, and Mercury follows Newton's laws.

A Bayesian test would create three hypotheses, $H_a$, $H_b$, and $H_c$. For a data set that is large enough, you would end up with the hypothesis or the combination of hypotheses that are most likely true. However, since $H_d$ wasn't tested, you may continue to be fooled by the idea yet to be thought of.

The Frequentist hypothesis testing regime would assume that the alternative hypothesis is $H_A\to{H}_x$, and the null is $H_0\to\neg{H}_x$. The null contains every hypothesis that is not the alternative.

The first example in the academic literature, but not the first null hypothesis, is where R.A. Fisher assumed that Mendel's laws were false as the null. If you discredit the null, then you exclude every explanation, including those not yet considered. The first null hypothesis was that Muriel Bristol (Fisher's boss) could not correctly detect the difference between tea poured into mild from milk poured into tea. That was the very first statistical test.

There is a slight difference between R.A. Fisher's idea of a null and Pearson and Neyman's idea of a null. Fisher felt there was a null, but no alternative hypothesis. If you rejected the null, it told you what was wrong, but was not directive as to what was correct automatically. Pearson and Neyman championed acceptance and rejection regions based on frequencies, and they felt the method directed behavior.

The logic was that the method created a probabilistic version of modus tollens. Modus tollens is "if A then B; and, not B; therefore, not A." Or, if the null is true, then the test will appear in the acceptance region if it does not, then you can reject the null.

The weakness of the methodology was proposed by an author that I cannot currently locate in this somewhat tongue-in-cheek way. There are 535 elected members representing the states in the U.S. Congress. There are 360 million Americans. Therefore since 535/360000000 is less than .05, if you randomly sample a group of Americans and pick a member of Congress, they cannot be an American (p<.05).

While Fisher's no effect hypothesis is the most common version, because of its implication would be that something has an effect in the alternative, it is not a requirement that a parameter equals zero, or a set of parameters all equal zero.

What matters is that the null is the opposite of what you are wanting to assert before seeing the data.

That makes the null hypothesis method a potent tool. Think about this as a rhetorical device. Your opponent opposes $H_d$ that you recently believe you have discovered.

You do not assert $H_d$ is true. You assert your opponent's position of $\neg{H}_d$ is true and build your probabilities on the assumption that you are the only person that is wrong. Everyone is right, and you are wrong.

It is a powerful rhetorical tool to concede the argument from the beginning, but then ask, "what would the world look like if I am the one that is wrong?" That is the null. If you reject the null, then what you are really saying is that "nature rejects all other ideas except mine."

Now as to your question, you want to show that college algebra matters, therefore your null hypothesis is that college algebra does not matter. We will ignore all the other methodological issues that would really be present since people without college algebra may have other self-selection issues as will the people with college algebra.

Your null is that algebra does not matter. The alternative is that it does. If the p-value is less than your $\alpha$ cutoff, chosen before collecting the data, then you can reject the null. If it is not, then you should behave as if it is true until you either do more research or find another way to come to a conclusion.

It would be dubious, ignoring the methodology issues, to assert that college algebra matters as you only have one sample. The method is intended for repetition. Nonetheless, you would only be made a fool of no more than $\alpha$ percent of the time, ignoring the methodological issues by following the results of the test.

2 of 2
0

It appears you are asking for clarification..

A null, Ho, essentially predicts no effect (no difference between groups, no correlation/association between variables etc), whereas an alternative/experimental, Ha or H1 predicts an effect.

So in your example, you have the gist of Ho and Ha (though the wording could be improved).

Your Chi-square test gives you a chi-square value - you need to either a) compare this with a 'critical' chi-square value b) know the p-value associated with your chi-square value and compare this with an 'alpha' p-value (typically .05 in psychology for example)

These amount to the same kind of thing For this example, if your alpha/cutoff is .05, then your 'critical' chi-square is 3.841.

NHST requires that, if your p-value is LESS than your alpha/cutoff, then you reject the null.

Here's where the confusion might arise: As chi-square values increase, associated p values decrease.

So, if your chi-square value is SMALLER than the critical, your associated p-value would be LARGER than the alpha/cutoff. If p is larger, the null is NOT rejected.

If your chi-square value is LARGER than the critical, your associated p-value would be SMALLER than the alpha/cutoff. If p is smaller, the null IS rejected.

🌐
Formpl
formpl.us › blog › alternative-null-hypothesis
Alternative vs Null Hypothesis: Pros, Cons, Uses & Examples
November 22, 2021 - When you think about the word “null” what should come to mind is something that can not change, what you expect is what you get, unlike alternate hypotheses which can change. Now, the research problems or questions which could be in the form of null hypothesis or alternative hypothesis are expressed as the relationship that exists between two or more variables. The process for this states that the questions should be what expresses the relationship between two variables that can be measured. Both null hypotheses and alternative hypotheses are used by statisticians and researchers to conduct research in various industries or fields such as mathematics, psychology, science, medicine, and technology.
🌐
YouTube
youtube.com › watch
Difference Between Null and Alternative Hypothesis | Example | Definition | Step by step Guide - YouTube
Difference Between Null and Alternative Hypothesis | Example | Definition | Step by step GuideNull and alternative hypotheses are used in statistical hypothe...
Published   June 22, 2022
🌐
Quora
quora.com › Can-you-explain-the-difference-between-a-null-and-alternative-hypothesis-Also-which-one-is-typically-stated-first
Can you explain the difference between a null and alternative hypothesis? Also, which one is typically stated first? - Quora
Answer (1 of 2): Your question is confused. * Null hypothesis has a specific role in statistical proofs. * The word “alternative” in hypotheses has no specific role. Just use the dictionary definition of “alternative”. * You will learn about “null hypothesis” when you study statistical ...
Top answer
1 of 3
12

Your question starts out as if the statistical null and alternative hypotheses are what you are interested in, but the penultimate sentence makes me think that you might be more interested in the difference between scientific and statistical hypotheses.

Statistical hypotheses can only be those that are expressible within a statistical model. They typically concern values of parameters within the statistical model. Scientific hypotheses almost invariably concern the real world, and they often do not directly translate into the much more limited universe of the chosen statistical model. Few introductory stats books spend any real time considering what constitutes a statistical model (it can be very complicated) and the trivial examples used have scientific hypotheses so simple that the distinction between model and real-world hypotheses is blurry.

I have written an extensive account of hypothesis and significance testing that includes several sections dealing with the distinction between scientific and statistical hypotheses, as well as the dangers that might come from assuming a match between the statistical model and the real-world scientific concerns: A Reckless Guide to P-values

So, to answer your explicit questions:

• No, statisticians do not always use null and alternative hypotheses. Many statistical methods do not require them.

• It is common practice in some disciplines (and maybe some schools of statistics) to specify the null and alternative hypothesis when a hypothesis test is being used. However, you should note that a hypotheses test requires an explicit alternative for the planning stage (e.g. for sample size determination) but once the data are in hand that alternative is no longer relevant. Many times the post-data alternative can be no more than 'not the null'.

• I'm not sure of the mental heuristic thing, but it does seem possible to me that the beginner courses omit so much detail in the service of simplicity that the word 'hypothesis' loses its already vague meaning.

2 of 3
5

You wrote

the declaration of a null and alternative hypothesis is the "first step" of any good experiment and subsequent analysis.

Well, you did put quotes around first step, but I'd say the first step in an experiment is figuring out what you want to figure out.

As to "subsequent analysis", it might even be that the subsequent analysis does not involve testing a hypothesis! Maybe you just want to estimate a parameter. Personally, I think tests are overused.

Often, you know in advance that the null is false and you just want to see what is actually going on.

🌐
Statistics LibreTexts
stats.libretexts.org › campus bookshelves › las positas college › math 40: statistics and probability › 8: hypothesis testing with one sample › 8.1: steps in hypothesis testing
8.1.1: Null and Alternative Hypotheses - Statistics LibreTexts
August 8, 2020 - They are called the null hypothesis and the alternative hypothesis. These hypotheses contain opposing viewpoints. \(H_0\): The null hypothesis: It is a statement of no difference between the variables—they are not related.